ENGR 8

Working with Vectors and Matrices in Matlab

Note: for a general introduction, see the file “Matlab Overview”

I. Vectors

The most challenging problems in ENGR 8 involve 3D vectors. We can use Matlab to help us with these problems. Matlab has developed a highly effective notation for easily representing vectors and matrices in a variable.

A vector is a series of numbers, such as what might be used to represent a point in 3 dimensions. For example [5, 7, 2] might represent a point with an x value of 5, a y value of 7, and a z value of 2.

The previous notation indicates a “row vector” or a horizontal arrangement of values. Vectors can also be aligned vertically in “column vectors”, such as

	5

7

2

in Matlab this would be typed as [5 ; 7 ; 2]. Alternatively, the expression [5, 7, 2]' uses the transpose operator (the apostrophe) to convert a row vector into a column vector.

1. Enter the following vectors and confirm their appearance in Matlab:

a) [5, 7, 2]

b) [5; 7; 2]

c) [5, 7, 2]'

d) r = [3, 4, 2]'  stores vector in variable r

e) F = [0, 0, 10]'

f) r1=9*[sind(40)*cosd(30) -sind(40)*sind(30) cosd(40)]

(note: sind, cosd use angles in degrees)

2. Vector arithmetic on a cell by cell basis is performed using the operators +, -, .* and ./ That’s right .* handles cell by cell multiplication between 2 vectors
(plain * performs the “dot product” and gives a scalar answer) and ./ handles cell by cell division. Both vectors must have the same number of items, and they must both be either row or column vectors. Try these operators out in the following examples:

Force Vectors

a) F1 = [1, 0, 10]

b) F2= [-4, 4, 9]

c) Fr = F1 + F2

Position Vectors

d) a=[2, 3, 5]

e) b=[-10, 10, 8]

f) Rab= b - a

g) Rba = a – b

Magnitude of a vector and dot product

h) sum(a) (gives the sum of all the components of a)

i) a .* a (gives a vector of the square of each component of a)

j) sum (a.* a) (gives the sum of the squares of each component of a)

k) sqrt(sum(a.*a)) (the magnitude of a)

l) norm(a)

 (the magnitude of a -- an easier way)

m) Ua = a / norm(a) (a unit vector in the direction of a)

n) Fr_parallel_to_a = Fr * Ua (the component of Fr parallel to a -- ERROR)

o) Fr_parallel_to_a = Fr * Ua ' (the component of Fr parallel to a – Correct)

 For the last example, Ua must be converted to a column vector for dot

 product to work. That’s why the ‘ is needed
p) Fr_perpendicular_to_a = Fr – Fr_parallel_to_a

II. Functions

With operations like finding the magnitude or unit vector, we can make functions to simplify our calculations. The mechanics of setting up a function involves creating an m-file and entering your function definition into it. Then you can use the function in your regular calculations

file: mag.m

function m = mag(v)
 m = sqrt(sum(v .* v));

file: unit.m

function u = unit(v)
 u = v ./ mag(v);

With these functions in your workspace, you can reduce the unit calculation above to:

Ua=unit(a)

In addition, the magnitude of Fr can be found by:

Fmag = mag(Fr)

Example Problem 2-110

Determine the magnitude of the projected compnent of r1 along r2,

and the projection of r2 along r1

In matlab:

r1=9*[sind(40)*cosd(30) -sind(40)*sind(30) cosd(40)]

r1 = 5.0100 -2.8925 6.8944

r2=6*[cosd(60) cosd(45) cosd(120)]

r2 = 3.0000 4.2426 -3.0000

 Mag_r1_par_r2 = r1 * unit(r2)'

Mag_r1_par_r2 = -2.9875

r2_par_r1 = r2 * unit(r1)' * r2

r1_par_r2 = -2.9875

AND, according to the rule of the dot product, the angle theta between r1 and r2 can be

found using:

theta=acosd(r1 * r2' / (mag(r1)*mag(r2)))

theta = 109.39

III. Aplication: Solving Systems of Linear Equations

Consider a common occurrence in Engineering, the need to solve a system of simultaneous equations:

 3x + 4y + 5z = 32

 21x + 5y + 2z = 20

 x – 2y + 10z = 120

In this case we are looking for a solution set—a value of x, y, and z—that satisfies all 3 equations. In general, these 3 equations could have 1 solution, many solutions, or NO solutions. For now, we will look for a single solution using matrix algebra.

The method involves setting up the equation in matrix/vector form, in other words:

	 3 4 5

21 5 2

 1 -2 10
	*
	x

y

z
	=
	 32

 20

120

In Matlab, we would do this by typing:

 A = [3 4 5; 21 5 2; 1 -2 10]

 u = [x y z]’

 b = [32 20 120]’

In other words, A u = b (this is linear algebra). Now, with algebra we know that if you multiply both sides by 1/A you get u = 1/A * b Note that since we are using matrices here, the order of operation is critical. It would be wrong to say u = b/A, even though that would work in basic algebra.

Matlab provides two ways to do this…using “Left division” (the backslash symbol), we can say u = A \ b (This is the recommended approach for speed and accuracy). Or we can use the matrix inverse function inv(): u = inv(A) * b

>> u = A\b

u =

 1.4497 (value of x)

 -6.3249 (value of y)

 10.5901 (value of z)

Finally, to prove you have the correct answer, you can plug these values in the original equation test = A * u and see if you get the b vector you started with.

Your Turn: First go through the previous example in Matlab, then solve the following sets of equations:

x + y + z = 6

2x + 5y + z = 15

Answer: x = y = z =

 -3x + y + 5z = 14

Example Problem 3-49

Determine the tension in each of three cables for equilibrium

Rad=[-.75 1 -3]

Rac=[1 1.5 -3]

Rab=[1 -3 -3]

Uad=unit(Rad)

Uac=unit(Rac)

Uab=unit(Rab)

The vector solution would be something like:

F ab + Fac + Fad + [0 0 25] = 0

where Fab, Fac, etc are force vectors.

Since each Force vector has an (i,j,k) component, we will need to solve a 3 equation

system. The best way to do this in Matlab is to form a linear system Ax = b, where A is

a 3x3 matrix of unit vectors, x is the unknown vector of force magnitudes [Fab Fac Fad]

and b is the vector of what the matrix product should equal.

In other words

A = [Uab' Uac' Uad'] (a matrix of the 3 unit vectors)

b = [0 0 -25]'

Then, x = A\b (and the force magnitudes are given as answer)

