EQUILIBRIUM OF A PARTICLE, THE FREE-BODY DIAGRAM & COPLANAR FORCE SYSTEMS

Today's Objectives:

Students will be able to :

- a) Draw a free body diagram (FBD), and,
- b) Apply equations of equilibrium to solve a 2-D problem.

In-Class Activities:

- Reading Quiz
- Applications
- What, Why and How of a FBD
- Equations of Equilibrium
- Analysis of Spring and Pulleys
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ

- 1) When a particle is in equilibrium, the sum of forces acting on it equals _____. (Choose the most appropriate answer)
 - A) a constantB) a positive numberC) zeroD) a negative numberE) an integer.
- 2) For a frictionless pulley and cable, tensions in the cable $(T_1 \text{ and } T_2)$ are related as _____ .
 - A) $T_1 > T_2$
 - B) $T_1 = T_2$
 - C) $T_1 < T_2$
 - D) $T_1 = T_2 \sin \theta$

Chapter 3 – Equilibrium of Particles

Force – action of one body on another which changes or produces a tendency to change the state of rest or motion of the body acted on.

Vector Quantity (Sliding Vector) a) Magnitude b) Direction c) Line of action

• Principle of Transmissibility for <u>Rigid</u> Bodies

Equilibrium Particle; Concurrent Forces

Equilibrium – all points of the body are at rest or have the same constant velocity.

$$\sum \vec{F}_{Ext} = 0$$
-Equilibrium equation
-Can be used to find unknown forces
-A vector equation!

$$\sum F_x = 0$$

$$\sum F_y = 0$$

To facilitate the application of the vector equation, we use a graphical representation.

Free-Body Diagram (FBD)

- Drawing of an object (or group of objects) showing **all external** forces acting on it.

- 1. Isolate body
- 2. Show Forces (contact, body, active, reactive)
- 3. Identify Forces

Weight and Normal Force

Multiple Bodies & Friction

Cables

TBC

Springs

Pulleys

Practice: The sphere has a weight of 60N. Draw the FBD of the sphere, the cord CE, the knot C, and the pulley B.

Fce

FCE

Example 1. The 10-kg sphere is at rest on the smooth horizontal surface. A) Determine the normal force on the floor and the tension in the cable if F = 20 N.

EXAMPLE 2

Given: Sack A weighs 20 lb. and geometry is as shown.

Find: Forces in the cables and weight of sack B.Plan:

1. Draw a FBD for Point E.

2. Apply EofE at Point E to solve for the unknowns $(T_{EG} \& T_{EC})$.

3. Repeat this process at C.

A FBD at E should look like the one to the left. Note the assumed directions for the two cable tensions.

The scalar E-of-E are:

 $\begin{array}{l} + \rightarrow ~\Sigma~F_x = T_{EG}~\sin ~30^\circ - ~T_{EC}~\cos ~45^\circ = 0 \\ + \uparrow ~\Sigma~F_y = T_{EG}\cos ~30^\circ - ~T_{EC}~\sin ~45^\circ ~-~ 20~lbs ~= 0 \\ \\ \text{Solving these two simultaneous equations for the} \\ \\ \text{two unknowns yields:} \end{array}$

$$T_{EC} = 38.6 \text{ lb}$$

 $T_{EG} = 54.6 \text{ lb}$

EXAMPLE 2 (continued)

Now move on to ring C. A FBD for C should look like the one to the left.

The scalar E-of-E are: + $\rightarrow \Sigma F_x = 38.64 \cos 45^\circ - (4/5) T_{CD} = 0$ + $\uparrow \Sigma F_y = (3/5) T_{CD} + 38.64 \sin 45^\circ - W_B = 0$

Solving the first equation and then the second yields $T_{CD} = 34.2$ lb and $W_B = 47.8$ lb.

Assuming you know the geometry of the ropes, you cannot determine the forces in the cables in which system above?

2) Why?

- A) The weight is too heavy.
- B) The cables are too thin.
- C) There are more unknowns than equations.
- D) There are too few cables for a 1000 lb weight.

GROUP PROBLEM SOLVING

- **Given:** The car is towed at constant speed by the 600 lb force and the angle θ is 25°.
- **Find:** The forces in the ropes AB and AC.

Plan:

- 1. Draw a FBD for point A.
- 2. Apply the E-of-E to solve for the forces in ropes AB and AC.

Applying the scalar E-of-E at A, we get; $+ \rightarrow \sum F_x = F_{AC} \cos 30^\circ - F_{AB} \cos 25^\circ = 0$ $+ \rightarrow \sum F_y = -F_{AC} \sin 30^\circ - F_{AB} \sin 25^\circ + 600 = 0$ Solving the above equations, we get; $F_{AB} = 634$ lb $F_{AC} = 664$ lb

ATTENTION QUIZ

1. Select the correct FBD of particle A.

ATTENTION QUIZ

2. Using this FBD of Point C, the sum of forces in the x-direction (ΣF_X) is _____. Use a sign convention of $+ \rightarrow$.

A)
$$F_2 \sin 50^\circ - 20 = 0$$

B) $F_2 \cos 50^\circ - 20 = 0$

C)
$$F_2 \sin 50^\circ - F_1 = 0$$

D) $F_2 \cos 50^\circ + 20 = 0$

End of the Lecture Let Learning Continue

