EQUILIBRIUM OF A PARTICLE, THE FREE-BODY DIAGRAM \& COPLANAR FORCE SYSTEMS

Today's Objectives:

Students will be able to :
a) Draw a free body diagram (FBD), and,
b) Apply equations of equilibrium to solve a 2-D problem.

In-Class Activities:

- Reading Quiz
- Applications
- What, Why and How of a FBD
- Equations of Equilibrium
- Analysis of Spring and Pulleys
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ

1) When a particle is in equilibrium, the sum of forces acting on it equals \qquad . (Choose the most appropriate answer)
A) a constant
B) a positive number
C) zero
D) a negative number E) an integer.
2) For a frictionless pulley and cable, tensions in the cable (T_{1} and T_{2}) are related as \qquad .
A) $T_{1}>T_{2}$
B) $\mathrm{T}_{1}=\mathrm{T}_{2}$
C) $\mathrm{T}_{1}<\mathrm{T}_{2}$
D) $\mathrm{T}_{1}=\mathrm{T}_{2} \sin \theta$

Cable is in tension

Chapter 3 - Equilibrium of Particles

Force - action of one body on another which changes or produces a tendency to change the state of rest or motion of the body acted on.

Vector Quantity (Sliding Vector) a) Magnitude
b) Direction
c) Line of action

- Principle of Transmissibility for Rigid Bodies

(Distributed Faces)
Body Forces
vs. Surface Forces

Force System Classification:
A. 2-D (coplanar) vs. 3-D
B. Collinear vs. Concurrent vs. Parallel vs.

Equilibrium Particle: Concurrent Forces

 Equilibrium - all points of the body are at rest or have the same constant velocity.

To facilitate the application of the vector equation, we use a graphical representation.

Free-Body Diagram (FBD)

- Drawing of an object (or group of objects) showing all external forces acting on it.

1. Isolate body
2. Show Forces (contact, body, active, reactive)
3. Identify Forces

Weight and Normal Force

Multiple Bodies \& Friction

Cables

Springs

Pulleys

smooth/frictionless pulley

$$
\Rightarrow \quad T_{1}=T_{2}
$$

Practice: The sphere has a weight of 60 N . Draw the FBD of the sphere, the cord CE, the knot C, and the pulley B.

Example 1. The $10-\mathrm{kg}$ sphere is at rest on the smooth horizontal surface. A) Determine the normal force on the floor and the tension in the cable if $\mathrm{F}=20 \mathrm{~N}$.

Find: N, T
Given: $E=20 \mathrm{~N}, \omega=\mathrm{mg}=98 \mathrm{~N}$

At rest \Rightarrow Equil.
All F^{\prime} concurrent \Rightarrow Particle $\} \Rightarrow 1$ (vector) eqn.

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& 2 D \geqslant 2 \text { scalarequs } \\
& \Rightarrow 2 \begin{array}{l}
\text { unks. } \\
T, N
\end{array}
\end{aligned}\left\{\begin{array}{l}
\sum F_{x}=0=F-T \cos 30^{\circ} \Rightarrow T=\frac{20 \mathrm{~N}}{\cos 30^{\circ}}=23.1 \mathrm{~N} \\
\sum F_{y}=0=N+T \sin 30^{\circ}-W \\
\\
\\
=N+(23.1 N) \sin 30^{\circ}-98 \mathrm{~N} \Rightarrow N=86.5 \mathrm{~N}
\end{array}\right.
$$

B) Draw graph of N as a function of F.

$$
\begin{aligned}
& \sum F_{x} \Rightarrow F=T \cos 30^{\circ} \\
& \text { as } F \uparrow \Rightarrow T \uparrow \\
& \sum F_{y} \Rightarrow N=\omega-T \sin 30^{\circ} \\
& \text { as } T \uparrow \Rightarrow N \downarrow
\end{aligned}
$$

(cable supports moe of ω)
eventually, $N \rightarrow \varnothing$ just before ball lifts

$$
\begin{gathered}
N=\omega-T \sin 30^{\circ}=\omega-\left(\frac{F}{\cos 30^{\circ}}\right) \sin 30^{\circ} \Rightarrow N=\left(-\tan 30^{\circ}\right) F+\omega \\
N=0 \Rightarrow F=\omega / \tan 30^{\circ}=170 N
\end{gathered}
$$

EXAMPLE 2

Given: Sack A weighs 20 lb . and geometry is as shown.

Find: Forces in the cables and weight of sack B.

Plan:

1. Draw a FBD for Point E.
2. Apply EofE at Point E to solve for the unknowns $\left(\mathrm{T}_{\mathrm{EG}} \& \mathrm{~T}_{\mathrm{EC}}\right.$).
3. Repeat this process at C.

EXAMPLE 2

(continued)

A FBD at E should look like the one to the left. Note the assumed directions for the two cable tensions.

The scalar E-of-E are:

$$
\begin{aligned}
& +\rightarrow \quad \Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{T}_{\mathrm{EG}} \sin 30^{\circ}-\mathrm{T}_{\mathrm{EC}} \cos 45^{\circ}=0 \\
& +\uparrow \quad \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{T}_{\mathrm{EG}} \cos 30^{\circ}-\mathrm{T}_{\mathrm{EC}} \sin 45^{\circ}-20 \mathrm{lbs}=0
\end{aligned}
$$

Solving these two simultaneous equations for the two unknowns yields:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{EC}} & =38.6 \mathrm{lb} \\
\mathrm{~T}_{\mathrm{EG}} & =54.6 \mathrm{lb}
\end{aligned}
$$

EXAMPLE 2 (continued)

Now move on to ring C .
A FBD for C should look like the one to the left.

The scalar E-of-E are:
$+\rightarrow \Sigma \mathrm{F}_{\mathrm{x}}=38.64 \cos 45^{\circ}-(4 / 5) \mathrm{T}_{\mathrm{CD}}=0$
$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=(3 / 5) \mathrm{T}_{\mathrm{CD}}+38.64 \sin 45^{\circ}-\mathrm{W}_{\mathrm{B}}=0$
Solving the first equation and then the second yields
$\mathrm{T}_{\mathrm{CD}}=34.2 \mathrm{lb}$ and $\mathrm{W}_{\mathrm{B}}=47.8 \mathrm{lb}$.

CONCEPT QUESTIONS

(A)

1000 lb
(B)

1000 lb
(C)

1) Assuming you know the geometry of the ropes, you cannot determine the forces in the cables in which system above?
2) Why?
A) The weight is too heavy.
B) The cables are too thin.
C) There are more unknowns than equations.
D) There are too few cables for a 1000 lb weight.

GROUP PROBLEM SOLVING

Given: The car is towed at constant speed by the 600 lb force and the angle θ is 25°.

Find: The forces in the ropes AB and AC.

Plan:

1. Draw a FBD for point A .
2. Apply the E-of-E to solve for the forces in ropes $A B$ and $A C$.

GROUP PROBLEM SOLVING

Applying the scalar E-of-E at A, we get;
$+\rightarrow \sum \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{AC}} \cos 30^{\circ}-\mathrm{F}_{\mathrm{AB}} \cos 25^{\circ}=0$
$+\rightarrow \sum \mathrm{F}_{\mathrm{y}}=-\mathrm{F}_{\mathrm{AC}} \sin 30^{\circ}-\mathrm{F}_{\mathrm{AB}} \sin 25^{\circ}+600=0$
Solving the above equations, we get;
$\mathrm{F}_{\mathrm{AB}}=634 \mathrm{lb}$
$\mathrm{F}_{\mathrm{AC}}=664 \mathrm{lb}$

ATTENTION QUIZ

1. Select the correct FBD of particle A.

ATTENTION QUIZ

2. Using this FBD of Point C , the sum of forces in the x -direction $\left(\Sigma \mathrm{F}_{\mathrm{X}}\right)$ is \qquad .
Use a sign convention of $+\rightarrow$.
A) $\mathrm{F}_{2} \sin 50^{\circ}-20=0$
B) $\mathrm{F}_{2} \cos 50^{\circ}-20=0$

C) $\mathrm{F}_{2} \sin 50^{\circ}-\mathrm{F}_{1}=0$
D) $\mathrm{F}_{2} \cos 50^{\circ}+20=0$

End of the Lecture

> Let Learning Continue

