POSITION VECTORS & FORCE VECTORS

Today's Objectives:

Students will be able to :

- a) Represent a position vector in Cartesian coordinate form, from given geometry.
- b) Represent a force vector directed along
 - a line.

In-Class Activities:

- Check Homework
- Reading Quiz
- Applications / Relevance
- Write Position Vectors
- Write a Force Vector
- Concept Quiz
- Group Problem
- Attention Quiz

READING QUIZ

- 1. A position vector, r_{PQ} , is obtained by
 - A) Coordinates of Q minus coordinates of P
 - B) Coordinates of P minus coordinates of Q
 - C) Coordinates of Q minus coordinates of the origin
 - D) Coordinates of the origin minus coordinates of P
- 2. A force of magnitude F, directed along a unit vector U, is given by $F = _$.
 - A) F (**U**)
 - B) **U** / F
 - C) F / **U**
 - D) F + **U**
 - E) F **U**

APPLICATIONS

How can we represent the force along the wing strut in a 3-D Cartesian vector form?

Wing strut

POSITION VECTOR

A position vector is defined as a fixed vector that locates a point in space relative to another point.

Consider two points, A & B, in 3-D space. Let their coordinates be (X_A, Y_A, Z_A) and (X_B, Y_B, Z_B) , respectively.

The position vector <u>directed from A to B</u>, r_{AB} , is defined as $r_{AB} = \{(X_B - X_A)i + (Y_B - Y_A)j + (Z_B - Z_A)k\}m$ Please note that B is the ending point and A is the starting point. <u>So ALWAYS subtract the "tail" coordinates from the "tip"</u> <u>coordinates!</u>

FORCE VECTOR DIRECTED ALONG A LINE (Section 2.8)

If a force is directed along a line, then we can represent the force vector in Cartesian Coordinates by using a unit vector and the force magnitude. So we need to:

- a) Find the position vector, r_{AB} , along two points on that line.
- b) Find the unit vector describing the line's direction, $u_{AB} = (r_{AB}/r_{AB}).$
- c) Multiply the unit vector by the magnitude of the force, $\underline{F} = \underbrace{F} \underbrace{u_{AB}}$.

EXAMPLE (continued)

The figure shows that when relating D to A, we will have to go -2 ft in the x-direction, -6 ft in the y-direction, and +14 ft in the z-direction. Hence,

$$r_{DA} = \{-2i - 6j + 14k\}$$
 ft.

We can also find r_{DA} by subtracting the coordinates of D from the coordinates of A.

 $r_{DA} = (2^2 + 6^2 + 14^2)^{0.5} = 15.36 \text{ ft}$ $u_{DA} = r_{DA}/r_{DA} \text{ and } F_{DA} = 400 u_{DA} \text{ lb}$ $F_{DA} = 400\{(-2 i - 6 j + 14 k)/15.36\} \text{ lb}$ $= \{-52.1 i - 156 j + 365 k\} \text{ lb}$

CONCEPT QUIZ

- 1. **P** and **Q** are two points in a 3-D space. How are the position vectors r_{PO} and r_{OP} related?
 - A) $r_{PQ} = r_{QP}$ B) $r_{PQ} = -r_{QP}$ C) $r_{PQ} = 1/r_{QP}$ D) $r_{PQ} = 2r_{QP}$
- 2. If *F* and *r* are force vector and position vectors, respectively, in SI units, what are the units of the expression (*r* * (*F* / F))?
 - A) Newton B) Dimensionless
 - C) Meter D) Newton Meter
 - E) The expression is algebraically illegal.

GROUP PROBLEM SOLVING Given: Two forces are acting on a pipe as shown in the figure.

 $F_2 = 81 \text{ lb}$

7 ft

4 ft

4 ft

 $F_1 = 100 \text{ lb}$

40°

3 ft

i) Find
$$\vec{F}_{1}$$
 A: (-3sin 40, 3cos 40, 0)
(: (0, 0, 4)

K

$$\vec{r}_{CA} = A - C = -3 \sin 40 \hat{1} + 3 \cos 40 \hat{j} - 4 \hat{k}$$

$$= \frac{81 \cdot [c_{B}]}{r_{cB}} = \frac{100}{r_{cA}} = \frac{100}{r_{cA}} = -\frac{100}{r_{cA}} = -\frac$$

$$= 36\hat{i} - 63\hat{j} - 36\hat{k}$$

$$= 36\hat{i} - 63\hat{j} - 36\hat{k}$$

$$= -2.57\hat{i} - 17.04\hat{j} - 116\hat{k}$$

GROUP PROBLEM SOLVING (continued)

 $F_{CA} = 100 \text{ lb} \{ r_{CA} / r_{CA} \}$ $F_{CA} = 100 \text{ lb}(-3 \sin 40^{\circ} i + 3 \cos 40^{\circ} j - 4 k)/5$ $F_{CA} = \{-38.57 \, \mathbf{i} + 45.96 \, \mathbf{j} - 80 \, \mathbf{k}\} \, \text{lb}$ $\sum_{y}^{7_{40^{\circ}}} F_{CB} = 81 \text{ lb} \{ r_{CB} / r_{CB} \}$ $F_{CR} = 81 \text{ lb}(4 i - 7 j - 4 k)/9$ $F_{CR} = \{36 i - 63 j - 36 k\}$ lb $F_{R} = F_{CA} + F_{CR} = \{-2.57 \ i - 17.04 \ j - 116 \ k\}$ lb $F_R = (2.57^2 + 17.04^2 + 116^2) = 117.3 \text{ lb} = 117 \text{ lb}$ $\alpha = \cos^{-1}(-2.57/117.3) = 91.3^{\circ}, \ \beta = \cos^{-1}(-17.04/117.3) = 98.4^{\circ}$ $\gamma = \cos^{-1}(-116/117.3) = 172^{\circ}$

ATTENTION QUIZ

1. Two points in 3 – D space have coordinates of P (1, 2, 3) and Q (4, 5, 6) meters. The position vector r_{OP} is given by

A)
$$\{3i + 3j + 3k\}$$
 m
B) $\{-3i - 3j - 3k\}$ m
C) $\{5i + 7j + 9k\}$ m
D) $\{-3i + 3j + 3k\}$ m
E) $\{4i + 5j + 6k\}$ m

2. Force vector, **F**, directed along a line PQ is given by

A) $(\mathbf{F}/\mathrm{F}) \mathbf{r}_{PQ}$ C) $\mathbf{F}(\mathbf{r}_{PQ}/\mathrm{r}_{PQ})$

B)
$$r_{PQ}/r_{PQ}$$

D) $F(r_{PQ}/r_{PQ})$

End of the Lecture Let Learning Continue

EXAMPLE Given: 400 lb force along the cable DA.

Find: The force F_{DA} in the Cartesian vector form.

GROUP PROBLEM SOLVING Given: Two forces are acting on a

Two forces are acting on a pipe as shown in the figure.

Find: The magnitude and the coordinate direction angles of the resultant force.

