POSITION VECTORS \& FORCE VECTORS

Today's Objectives:

Students will be able to :
a) Represent a position vector in Cartesian coordinate form, from given geometry.
b) Represent a force vector directed along a line.

In-Class Activities:

- Check Homework
- Reading Quiz
- Applications / Relevance
- Write Position Vectors
- Write a Force Vector
- Concept Quiz
- Group Problem
- Attention Quiz

READING QUIZ

1. A position vector, $r_{P Q}$, is obtained by
A) Coordinates of Q minus coordinates of P
B) Coordinates of P minus coordinates of Q
C) Coordinates of Q minus coordinates of the origin
D) Coordinates of the origin minus coordinates of P
2. A force of magnitude F, directed along a unit vector U, is given by $F=$ \qquad .
A) $\mathrm{F}(\boldsymbol{U})$
B) U / F
C) F / U
D) $\mathrm{F}+U$
E) $\mathrm{F}-\boldsymbol{U}$

APPLICATIONS

How can we represent the force along the wing strut in a 3-D
Cartesian vector form?

Wing strut

POSITION VECTOR

A position vector is defined as a fixed vector that locates a point in space relative to another point.
Consider two points, A \& B, in 3-D space. Let their coordinates be $\left(\mathrm{X}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{A}}, \mathrm{Z}_{\mathrm{A}}\right.$) and (X_{B}, $\mathrm{Y}_{\mathrm{B}}, \mathrm{Z}_{\mathrm{B}}$), respectively.
The position vector directed from A to $\mathrm{B}, r_{A B}$, is defined as $r_{A B}=\left\{\left(\mathrm{X}_{\mathrm{B}}-\mathrm{X}_{\mathrm{A}}\right) i+\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{A}}\right) j+\left(\mathrm{Z}_{\mathrm{B}}-\mathrm{Z}_{\mathrm{A}}\right) k\right\} \mathrm{m}$
Please note that B is the ending point and A is the starting point. So ALWAYS subtract the "tail" coordinates from the "tip" coordinates!

FORCE VECTOR DIRECTED ALONG A LINE (Section 2.8)

> If a force is directed along a line, then we can represent the force vector in Cartesian Coordinates by using a unit vector and the force magnitude. So we need to:
a) Find the position vector, ${ }_{A B}$, along two points on that line.
b) Find the unit vector describing the line's direction, $u_{A B}=\left(r_{A B} / \mathrm{r}_{\mathrm{AB}}\right)$.
c) Multiply the unit vector by the magnitude of the force, $\underline{F}=\underline{F} u_{A B}$.

EXAMPLE Given: 400 lb force along the cable DA.

Find: The force $F_{D A}$ in the Cartesian vector form.

1) Find $\vec{r}_{D A}$

$$
A=\{0,014\}
$$

$$
\vec{r}_{D A}=A-D=-2 \hat{\imath}-6 \hat{\jmath}+14 \hat{k}=\vec{r}_{D A}
$$

$$
\text { 2) } F_{\text {ind }}\left|r_{D A}\right|=\sqrt{(-2)^{2}+(-6)^{2}+(14)^{2}}=15.36 f t
$$

3) Find $\vec{u}_{D A}=\frac{\vec{r}_{D A}}{r_{D A}}=\frac{-2}{15,36} \hat{\imath}-\frac{6}{15,36} \hat{\jmath}+\frac{14}{15,36} \hat{k}$
4) Find $\vec{F}_{D A}=400 \vec{U}_{D A}=400\{(-2 \hat{i}-6 \hat{j}+14 \hat{k}) / 15.36\}=(-52.1 \hat{\imath}-156 \hat{\jmath}+365 \hat{k})$

EXAMPLE (continued)

The figure shows that when relating D to A , we will have to go -2 ft in the x direction, -6 ft in the y -direction, and +14 ft in the z -direction. Hence,

$$
r_{D A}=\{-2 i-6 j+14 k\} \mathrm{ft} .
$$

We can also find $r_{D A}$ by subtracting the coordinates of D from the coordinates of A .

$$
\begin{aligned}
\mathrm{r}_{\mathrm{DA}} & =\left(2^{2}+6^{2}+14^{2}\right)^{0.5}=15.36 \mathrm{ft} \\
u_{D A} & =r_{D A} / \mathrm{r}_{\mathrm{DA}} \text { and } F_{D A}=400 u_{D A} \mathrm{lb} \\
F_{D A} & =400\{(-2 i-6 j+14 k) / 15.36\} \mathrm{lb} \\
& =\{-52.1 i-156 j+365 k\} \mathrm{lb}
\end{aligned}
$$

CONCEPT QUIZ

1. \mathbf{P} and \mathbf{Q} are two points in a 3-D space. How are the position vectors $r_{P Q}$ and $r_{Q P}$ related?
A) $r_{P Q}=r_{Q P}$
B) $r_{P Q}=-r_{Q P}$
C) $r_{P Q}=1 / r_{Q P}$
D) $r_{P Q}=2 r_{Q P}$
2. If F and r are force vector and position vectors, respectively, in SI units, what are the units of the expression II $\left.^{*}(F / F)\right)$?
A) Newton
B) Dimensionless
D) Newton - Meter
E) The expression is algebraically illegal.

$$
\begin{aligned}
& \text { GROUP PROBIEEM SOLVING Given: Two forces are acting on a } \\
& \text { pipe as shown in the figure. } \\
& \text { Find: The magnitude and the } \\
& \text { coordinate direction angles } \\
& \text { of the resultant force. } \\
& \text { 1) Find } \vec{F}_{1} \\
& \text { A: }(-3 \sin 40,3 \cos 40,0) \\
& C:(0,0,4) \\
& \text { 2) Find } \vec{F}_{2} \\
& \vec{F}_{2}=81 \cdot \frac{\vec{r}_{C B}}{r_{C B}} \\
& \vec{r}_{C A}=A-C=-3 \sin 40 \hat{\imath}+3 \cos 40 \hat{\jmath}-4 \hat{k} \\
& =81(4 \hat{\imath}-7 \hat{\jmath}-4 \hat{k}) / 9 \\
& =36 \hat{\imath}-63 \hat{\jmath}-36 \hat{k} \\
& \text { 3) } \\
& \vec{F}_{R}=\vec{F}_{1}+\vec{F}_{2}=-2.57 \hat{\imath}-17.04 \hat{\jmath}-116 \hat{k} \\
& F_{R}=\sqrt{()^{2}+()^{2}+()^{2}}=117 \\
& \left\lvert\, \begin{array}{l}
\alpha=\cos ^{-1}\left(-\frac{2.57}{177}\right)=91.3^{\circ} \\
\beta=\cos ^{-1}\left(-\frac{17.04}{17}\right)=98.4^{\circ} \\
\gamma=\cos ^{-1}\left(\frac{-16}{17}\right)=172^{\circ}
\end{array}\right.
\end{aligned}
$$

GROUP PROBLEM SOLVING

(continued)

$$
\left.\begin{array}{rl}
F_{C A} & =100 \mathrm{lb}\left\{r_{C A} / \mathrm{r}_{\mathrm{CA}}\right\} \\
\boldsymbol{F}_{C A} & =100 \mathrm{lb}\left(-3 \sin 40^{\circ} \boldsymbol{i}+3 \cos 40^{\circ} \boldsymbol{j}-4 \boldsymbol{k}\right) / 5
\end{array}\right\} \begin{aligned}
& \boldsymbol{F}_{C A}=\{-38.57 \boldsymbol{i}+45.96 j-80 k\} \mathrm{lb} \\
& \boldsymbol{F}_{C B}=81 \mathrm{lb}\left\{\boldsymbol{r}_{C B} / \mathrm{r}_{\mathrm{CB}}\right\}
\end{aligned}
$$

$$
F_{R}=F_{C A}+F_{C B}=\{-2.57 i-17.04 j-116 k\} \mathrm{lb}
$$

$$
\gamma=\cos ^{-1}(-116 / 117.3)=172^{\circ}
$$

ATTENTION QUIZ

1. Two points in 3 - D space have coordinates of $\mathrm{P}(1,2,3)$ and Q $(4,5,6)$ meters. The position vector $r_{Q P}$ is given by

$$
\text { A) }\{3 i+3 j+3 k\} \mathrm{m}
$$

B) $)-3 i-3 j-3 k\} \mathrm{m}$
C) $\{5 i+7 j+9 k\} \mathrm{m}$
D) $\{-3 i+3 j+3 k\} \mathrm{m}$

E) $\{4 i+5 j+6 k\} \mathrm{m}$
2. Force vector, F, directed along a line PQ is given by

A) $(F / \mathrm{F}) r_{P Q}$	B) $r_{P Q} / \mathrm{r}_{\mathrm{PQ}}$
C) $\left(\mathrm{F}_{2} r_{P Q} / r_{\mathrm{PQ}}\right)$	D) $\mathrm{F}\left(\mathrm{r}_{\mathrm{PQ}} / r_{P Q}\right)$

End of the Lecture

Let Learning Continue

EXAMPLE Given: 400 lb force along the cable DA.

Find: The force $F_{D A}$ in the Cartesian vector form.

GROUP PROBLEM SOLVING Given: Two forces are acting on a pipe as shown in the figure.

Find: The magnitude and the coordinate direction angles of the resultant force.

