## FORCE VECTORS, VECTOR OPERATIONS \& ADDITION COPLANAR FORCES

## Today's Objective:

Students will be able to :
a) Resolve a 2-D vector into components.
b) Add 2-D vectors using Trig Laws and/or Cartesian vector notations.


## In-Class activities:

- Check Homework
- Reading Quiz
- Application of Adding Forces
- Parallelogram Law
- Resolution of a Vector Using Cartesian Vector Notation (CVN)
- Addition Using CVN
- Attention Quiz


## READING QUIZ

1. Which one of the following is a scalar quantity?

## A) Force B) Position C) Mass D) Velocity

2. For vector addition you have to use $\qquad$ law.
A) Newton's Second
B) the arithmetic
C) Pascal's
D) the parallelogram

## APPLICATION OF VECTOR ADDITION



There are four
concurrent cable forces acting on the bracket.

How do you determine the resultant force acting on the bracket?

## SCALARS AND VECTORS (Section 2.1)

Examples:
Characteristics:

Addition rule:
Special Notation:
mass, volume
It has a magnitude (positive or negative)

Scalars
force, velocity
It has a magnitude and direction

Parallelogram law
Bold font, a line, an
arrow or a "carrot"

In the PowerPoint presentation vector quantity is represented Like this (in bold, italics, and yellow).

## VECTOR OPERATIONS

(Section 2.2)


# Scalar Multiplication and Division 

# VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE 

Parallelogram Law:

Triangle method (always 'tip to tail'):


How do you subtract a vector?
How can you add more than two concurrent vectors graphically?


## Examgle ple

12-1. Delemine the magrifule of the tevant tate
 dockater from the $x$ axis
 screw

Find: Resultant force mag and direction

Plan:

1) Draw forces (not ropes)
2) Use Parallelogram Law for the resultant
3) Use Trig to solve for the angle

## Example (continued)



Law of cosines:

$$
A^{2}=2^{2}+6^{2}-2 * 2 * 6^{*} \cos (a)
$$

Law of supplementary angles:


$$
45+a+30=180, a=105
$$

So: $A^{2}=4+36-24 \cos (105)=46.21$

$$
A=\operatorname{sqrt}(46.21)=\frac{6.798 \mathrm{kN}}{6.80} \text { (mag of Resultant) }
$$

## Example (continued)

Q2-1. Delermine the magritude of the rewlant tione axting on the screw cye widl ifs direstion measured dockobe from the $x$ axis.


Law of sines:

$$
\begin{aligned}
& \sin (105) / A=\sin (b) / 6 \\
& b=\sin ^{-1}(6 \sin (105) / A)=58.49^{\circ}
\end{aligned}
$$



But the angle relative to $x$-axis is $b+45=103.49$ angle $=103^{\circ}$ (angle of resultant)

## RESOLUTION OF A VECTOR

## "Resolution" of a vector is breaking up a vector into components. It is kind of like using the parallelogram law in reverse.



Extend parallel lines from the head of $\mathbf{R}$ to form components


## CARTESIAN VECTOR NOTATION (Section


2.4)

- We 'resolve' vectors into components using the x and y axes system.
- Each component of the vector is shown as a magnitude and a direction.
- The directions are based on the $x$ and $y$ axes. We use the "unit vectors" $i$ and to designate the x and y axes.

For example,


The x and y axes are always perpendicular to each other. Together,they can be directed at any inclination.

## ADDITION OF SEVERAL VECTORS

## Cartesian Method is easiest



- Step 1 is to resolve each force into its Cartesian components
- Step 2 is to add all the x components together and add all the $y$ components together. These two totals become the resultant vector.
- Step 3 is to find the magnitude and angle of the resultant vector.

Example of this process,


$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3} \\
& =F_{1, x} \mathbf{i}+F_{1, \mathbf{y}} \mathbf{j}-F_{2 x} \mathbf{i}+F_{2, y} \mathbf{j}+F_{3, \mathbf{i}} \mathbf{i}-F_{3 y} \mathbf{j} \\
& =\left(F_{1, x}-F_{2 x}+F_{3, x}\right) \mathbf{i}+\left(F_{1 y}+F_{2 y}-F_{3 y}\right) \mathbf{j} \\
& =\left(F_{R x}\right) \mathbf{i}+\left(F_{R y}\right) \mathbf{j}
\end{aligned}
$$

You can also represent a 2-D vector with a magnitude and angle.


$$
F_{R}=\sqrt{F_{R x}^{2}+F_{R y}^{2}}
$$

$$
\theta=\tan ^{-1}\left|\frac{F_{R y}}{F_{R x}}\right|
$$

$$
\begin{array}{r}
\theta=\tan ^{-1}\left(\frac{4}{8}\right) \\
\tan ^{-1}\left(\frac{4}{-3}\right)
\end{array}
$$



Given: Three concurrent forces acting on a bracket.

Find: The magnitude and angle of the resultant force.

## Plan:

a) Resolve the forces in their $\mathrm{x}-\mathrm{y}$ components.
b) Add the respective components to get the resultant vector.
c) Find magnitude and angle from the resultant components.


EXAMPLE (continued)


$$
\begin{aligned}
& =\left\{15 \sin 40^{\circ} i+15 \cos 40^{\circ}\right\} \mathrm{kN} \\
& =\{9.642+11.49 j\} \mathrm{kN} \\
& =\{-(12 / 13) 26+(5 / 13) 26 j\} \mathrm{kN} \\
& =\{-24+10 j\} \mathrm{kN} \\
& =\left\{36 \cos 30^{\circ} i-36 \sin 30^{\circ}\right\} \mathrm{kN} \\
& =\{31.18 i-18 j\} \mathrm{kN}
\end{aligned}
$$

## EXAMPLE

## (continued)

Summing up all the $i$ and $j$ components respectively, we get,

$$
\begin{aligned}
F_{R} & =\{(9.642-24+31.18) i+(11.49+10-18) j\} \mathrm{kN} \\
& =\{16.82 i+3.49 j\} \mathrm{kN} \\
\mathrm{~F}_{\mathrm{R}} & =\left((16.82)^{2}+(3.49)^{2}\right)^{1 / 2}=17.2 \mathrm{kN} \\
\phi & =\tan ^{-1}(3.49 / 16.82)=11.7^{\circ}
\end{aligned}
$$

## CONCEPT QUIZ

1. Can you resolve a $2-\mathrm{D}$ vector along two directions, which are not at $90^{\circ}$ to each other?
A) Yes, but not uniquely.
B) No.
C) Yes, uniquely.
2. Can you resolve a 2-D vector along three directions (say

$$
\vec{F}=F_{a} \vec{A}+F_{b} \vec{B}
$$

A) Yes, butnot uniquely.
B) No.
C) Yes, uniqцely.


## GROUP PROBLEM SOLVING



Given: Three concurrent forces acting on a bracket

Find: The magnitude and angle of the resultant force.

## Plan:

a) Resolve the forces in their $x-y$ components.
b) Add the respective components to get the resultant vector.
c) Find magnitude and angle from the resultant components

## GROUP PROBLEM SOLVING (continued)



$$
\begin{aligned}
F_{1}= & \{(4 / 5) 850 i-(3 / 5) 850 j\} \mathrm{N} \\
= & \{680 i-510 j\} \mathrm{N} \\
F_{2}= & \left\{-625 \sin \left(30^{\circ}\right) i-625 \cos \left(30^{\circ}\right) j\right\} \mathrm{N} \\
= & \{-312.5 i-541.3 j\} \mathrm{N} \\
F_{3}= & \left\{-750 \sin \left(45^{\circ}\right) i+750 \cos \left(45^{\circ}\right) j\right\} \mathrm{N} \\
& \{-530.3 i+530.3 j\} \mathrm{N}
\end{aligned}
$$



## GROUP PROBLEM SOLVING (continued)

Summing up all the and components respectively, we get,

$$
\begin{aligned}
F_{\mathrm{R}} & =\{(680-312.5-530.3) i+(-510-541.3+530.3) j \mathrm{~N} \\
& =\{-162.8 i-521 j\} \mathrm{N}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{R}}=\left((162.8)^{2}+(521)^{2}\right)^{1 / 2}=546 \mathrm{~N}
$$

$$
\phi=\tan ^{-1}(521 / 162.8)=72.64^{\circ} \quad \text { or }
$$

From Positive x axis $\theta=180+72.64=253^{\circ}$


## ATTENTION QUIZ

1. Resolve $F$ along x and y axes and write it in vector form. $F=\{\ldots\} \mathrm{N}$
A) $80 \cos \left(30^{\circ}\right) i-80 \sin \left(30^{\circ}\right)$
B) $80 \sin \left(30^{\circ}\right) i+80 \cos \left(30^{\circ}\right)$
C) $80 \sin \left(30^{\circ}\right) i-80 \cos \left(30^{\circ}\right)$
D) $80 \cos \left(30^{\circ}\right) i+80 \sin \left(30^{\circ}\right)$

2. Determine the magnitude of the resultant $\left(F_{l}+F_{2}\right)$ force in N when $F_{j}=\{10 i+20 j\} \mathbf{N}$ and $=\{20 i+20 j\} \mathbf{N}$.
A) 30 N
B) 40 N
C) 50 N
D) 60 N
E) 70 N

## End of the Lecture

Let Learning Continue

