Review (Pos Vector)

6)

The tension in cable BC is of magnitude F = 400 N.a) Derive the unit vector for Fb) Express F as a Cartesian vector

a) Find
$$\vec{r}_{BC} = c - B$$

$$= (3-5)\hat{c} + (0-6)\hat{j} + (4-1)\hat{k}$$

$$\vec{r}_{K} = \hat{i} - 2\hat{c} - 6\hat{j} + 3\hat{k}\hat{j}m$$

$$\vec{u}_{BC} = \vec{u}_{F} = \frac{\vec{r}_{BC}}{\vec{v}_{BC}} = \frac{\hat{i} - 2\hat{c} - 6\hat{j} + 3\hat{k}\hat{j}m}{\sqrt{2^{2} + 6^{2} + 3^{2}}m}$$

$$\vec{u}_{F} = -\frac{2}{7}\hat{c} - \frac{6}{7}\hat{j} + \frac{3}{7}\hat{k}$$

$$\vec{F} = F\vec{u}_{F} = 400N\left(-\frac{2}{7}\hat{c} - \frac{6}{7}\hat{j} + \frac{3}{7}\hat{k}\right)$$

$$= \left(-114\hat{c} - 343\hat{j} + 171\hat{k}\right)N$$

DOT PRODUCT

Today's Objective:

Students will be able to use the dot product to:

- a) determine an angle between two vectors, and,
- b) determine the projection of a vector along <u>In-Class Activities</u>:
 a specified line.
 Check Homework

- Reading Quiz
- Applications / Relevance
- Dot product Definition
- Angle Determination
- Determining the Projection
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ

- 1. The dot product of two vectors **P** and **Q** is defined as
 - A) P Q $\cos \theta$ B) P Q $\sin \theta$ C) P Q $\tan \theta$ D) P Q $\sec \theta$

- 2. The dot product of two vectors results in a _____ quantity.
 - A) scalar B) vector
 - C) complex D) zero

APPLICATIONS

For this geometry, can you determine angles between the pole and the cables?

For force \mathbf{F} at Point A, what component of it (F₁) acts along the pipe OA? What component (F₂) acts perpendicular to the pipe?

DEFINITION

The dot product of vectors **A** and **B** is defined as $\mathbf{A} \cdot \mathbf{B} = \mathbf{A} \cdot \mathbf{B} \cos \theta$. Angle θ is the smallest angle between the two vectors and is always in a range of 0° to 180°.

Dot Product Characteristics:

- 1. The result of the dot product is a scalar (a positive or negative number).
- 2. The units of the dot product will be the product of the units of the *A* and *B* vectors.

DOT PRODUCT DEFINITON (continued)

Examples: $i \cdot j = 0$ $i \cdot i = 1$

$$\mathbf{A} \bullet \mathbf{B} = (\mathbf{A}_{\mathbf{x}} \, \mathbf{i} + \mathbf{A}_{\mathbf{y}} \, \mathbf{j} + \mathbf{A}_{\mathbf{z}} \, \mathbf{k}) \bullet (\mathbf{B}_{\mathbf{x}} \, \mathbf{i} + \mathbf{B}_{\mathbf{y}} \, \mathbf{j} + \mathbf{B}_{\mathbf{z}} \, \mathbf{k})$$
$$= \mathbf{A}_{\mathbf{x}} \, \mathbf{B}_{\mathbf{x}} + \mathbf{A}_{\mathbf{y}} \mathbf{B}_{\mathbf{y}} + \mathbf{A}_{\mathbf{z}} \mathbf{B}_{\mathbf{z}}$$

USING THE DOT PRODUCT TO DETERMINE THE ANGLE BETWEEN TWO VECTORS

For the given two vectors in the Cartesian form, one can find the angle by

- a) Finding the dot product, $\mathbf{A} \bullet \mathbf{B} = (A_x B_x + A_y B_y + A_z B_z)$,
- b) Finding the magnitudes (A & B) of the vectors A & B, and
- c) Using the definition of dot product and solving for θ , i.e.,
- $\theta = \cos^{-1} \left[(A \bullet B) / (A B) \right], \text{ where } 0^{\circ} \le \theta \le 180^{\circ}.$

Projection of a Vector along a line

Example 2.	c) Find the component of F parallel to AB
y B (5, 6, 1) m	d) Perpendicular to ABe) Find the angle between AB and F
59° F	c) $F_1 = \vec{F} \cdot \vec{u}_{AB}$
	$\vec{F} = 400N(-\hat{q}\hat{i} - \hat{q}\hat{j} + \hat{q}\hat{k})$
$C(3,0,4) \text{ m}$ $\vec{\mathcal{T}}_{AB} =$	$\frac{5\hat{\iota}+6\hat{j}+1\hat{k}}{\sqrt{5^2+6^2+1^2}} = 0.635\hat{\iota}+0.762\hat{j}+0.127\hat{k}$
$F_{II} = \vec{F} \cdot \vec{u}_{AB} = 400 \text{N} \left[\left(\right) \right]$	$-\frac{2}{7}(0.635)+(-\frac{4}{7}(0.762)+(\frac{3}{7}(0.127))$
F ₁₁ = -312 N (-) > opp.	\vec{u}_{AB} $\vec{F}_{II} = F_{II} \vec{u}_{AB} = -198 \hat{c} - 238 \hat{c} - 40 \hat{k} N$
d) $\vec{F}_{1} = \vec{F} - \vec{F}_{1} = (-114)$	(-343j+171k) - (-5j+211k) = 842 - 105j+211k
e) O=cos'(uf.uAB)=	$\cos^{1}\left(\frac{\vec{F}\cdot\vec{u}_{AB}}{F}\right) = \cos^{-1}\left(\frac{-312}{400}\right) = 141^{\circ} \begin{pmatrix} \text{or} \\ 39^{\circ} \end{pmatrix}$

EXAMPLE

Given: The force acting on the pole

Find: The angle between the force vector and the pole, and the magnitude of the projection of the force along the pole OA.

Plan:

- 1. Get **r**_{0A}
- 2. $\theta = \cos^{-1}\{(F \bullet r_{OA})/(F r_{OA})\}$
- 3. $F_{OA} = \mathbf{F} \cdot \mathbf{u}_{OA}$ or $F \cos \theta$

EXAMPLE (continued) $r_{OA} = \{2i + 2j - 1k\} \text{ m}$ $r_{OA} = (2^2 + 2^2 + 1^2)^{1/2} = 3 \text{ m}$ $F = \{2i + 4j + 10k\}$ kN $F = (2^2 + 4^2 + 10^2)^{1/2} = 10.95 \text{ kN}$ $F \cdot r_{OA} = (2)(2) + (4)(2) + (10)(-1) = 2 \text{ kN} \cdot \text{m}$ $\theta = \cos^{-1}\{(\mathbf{F} \bullet \mathbf{r}_{\mathbf{OA}})/(\mathbf{F} \mathbf{r}_{\mathbf{OA}})\}$ $\theta = \cos^{-1} \{2/(10.95 * 3)\} = 86.5^{\circ}$ $u_{OA} = r_{OA}/r_{OA} = \{(2/3)i + (2/3)j - (1/3)k\}$

 $F_{OA} = \mathbf{F} \cdot \mathbf{u}_{OA} = (2)(2/3) + (4)(2/3) + (10)(-1/3) = 0.667 \text{ kN}$ Or $F_{OA} = F \cos \theta = 10.95 \cos(86.51^{\circ}) = 0.667 \text{ kN}$

CONCEPT QUIZ

- 1. If a dot product of two non-zero vectors is 0, then the two vectors must be ______ to each other.
 - A) parallel (pointing in the same direction)
 - B) parallel (pointing in the opposite direction)
 - C) perpendicular
 - D) cannot be determined.
- 2. If a dot product of two non-zero vectors equals -1, then the vectors must be ______ to each other.
 - A) parallel (pointing in the same direction)
 - B) parallel (pointing in the opposite direction)
 - C) perpendicular
 - D) cannot be determined.

GROUP PROBLEM SOLVING

Given: The force acting on the pole.

Find: The angle between the force vector and the pole, and the magnitude of the projection of the force along the pole AO.

<u>Plan</u>:

- 1. Get *r_{A0}*
- 2. $\theta = \cos^{-1}\{(\mathbf{F} \bullet \mathbf{r}_{AO})/(\mathbf{F} \mathbf{r}_{AO})\}$

3. $F_{OA} = \mathbf{F} \cdot \mathbf{u}_{AO}$ or $F \cos \theta$

 $F \cdot r_{AO} = (-20)(-3) + (50)(2) + (-10)(-6) = 220 \text{ lb} \cdot \text{ft}$ $\theta = \cos^{-1} \{ (F \cdot r_{AO}) / (F r_{AO}) \}$ $\theta = \cos^{-1} \{ 220 / (54.77 \times 7) \} = 55.0^{\circ}$ $u_{AO} = r_{AO} / r_{AO} = \{ (-3/7) i + (2/7) j - (6/7) k \}$ $F_{AO} = F \cdot u_{AO} = (-20)(-3/7) + (50)(2/7) + (-10)(-6/7) = 31.4 \text{ lb}$ $Or F_{AO} = F \cos \theta = 54.77 \cos(55.0^{\circ}) = 31.4 \text{ lb}$

ATTENTION QUIZ

- 1. The Dot product can be used to find all of the following except _____.
 - A) sum of two vectors
 - B) angle between two vectors
 - C) component of a vector parallel to another line
 - D) component of a vector perpendicular to another line
- 2. Find the dot product of the two vectors \boldsymbol{P} and \boldsymbol{Q} .

 $P = \{5 i + 2 j + 3 k\} m$ $Q = \{-2 i + 5 j + 4 k\} m$ A) -12 m B) 12 m C) 12 m² D) -12 m² E) 10 m²

End of the Lecture Let Learning Continue

