

The tension in cable BC is of magnitude $F=400 \mathrm{~N}$.
a) Derive the unit vector for F
b) Express F as a Cartesian vector
a)

$$
\text { Find } \begin{aligned}
\vec{r}_{B C} & =C-B \\
& =(3-5) \hat{\imath}+(0-6) \hat{\jmath}+(4-1) \hat{k} \\
\vec{r}_{B C} & =\{-2 \hat{\imath}-6 \hat{\jmath}+3 \hat{k}\} m
\end{aligned}
$$

$$
\vec{u}_{B C}=\vec{u}_{F}=\frac{\vec{r}_{B C}}{r_{B C}}=\frac{\{-2 \hat{\imath}-6 \hat{\jmath}+3 k\} m}{\sqrt{2^{2}+6^{2}+3^{2}} m}
$$

$$
\vec{u}_{F}=-\frac{2}{7} \hat{\imath}-\frac{6}{7} \hat{\jmath}+\frac{3}{7} \hat{k}
$$

b)

$$
\begin{aligned}
\vec{F}=F \vec{u}_{F} & =400 N\left(-\frac{2}{7} \hat{\imath}-\frac{6}{7} \hat{\jmath}+\frac{3}{7} \hat{k}\right) \\
& =(-114 \hat{\imath}-343 \hat{\jmath}+171 \hat{k}) N
\end{aligned}
$$

DOT PRODUCT

Today's Objective:

Students will be able to use the dot product to:
a) determine an angle between two vectors, and,
b) determine the projection of a vector along In-Class Activities:
a specified line.

- Check Homework
- Reading Quiz
- Applications / Relevance
- Dot product - Definition
- Angle Determination
- Determining the Projection
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ

1. The dot product of two vectors \boldsymbol{P} and Q is defined as
A) $\mathrm{PQ} \cos \theta$
B) $\mathrm{P} \mathrm{Q} \sin \theta$
C) $\mathrm{P} Q \tan \theta$
D) $P Q \sec \theta$

2. The dot product of two vectors results in a quantity.
A) scalar \quad B) vector
C) complex \quad D) zero

APPLICATIONS

For this geometry, can you determine angles between the pole and the cables?

For force F at Point A, what component of it $\left(\mathrm{F}_{1}\right)$ acts along the pipe OA? What component $\left(\mathrm{F}_{2}\right)$ acts perpendicular to the pipe?

DEFINITION

The dot product of vectors \boldsymbol{A} and \boldsymbol{B} is defined as $\boldsymbol{A} \cdot \boldsymbol{B}=\mathrm{AB} \cos \theta$. Angle θ is the smallest angle between the two vectors and is always in a range of 0° to 180°.

Dot Product Characteristics:

1. The result of the dot product is a scalar (a positive or negative number).
2. The units of the dot product will be the product of the units of the \boldsymbol{A} and \boldsymbol{B} vectors.

DOT PRODUCT DEFINITON

(continued)

$$
\begin{array}{ll}
\text { Examples: } & i \bullet j=0 \\
\qquad i \bullet i=1 \\
A \cdot B= & \left(\mathrm{A}_{\mathrm{x}} i+\mathrm{A}_{\mathrm{y}} j+\mathrm{A}_{\mathrm{z}} \boldsymbol{k}\right) \cdot\left(\mathrm{B}_{\mathrm{x}} i+\mathrm{B}_{\mathrm{y}} j+\mathrm{B}_{\mathrm{z}} \boldsymbol{k}\right) \\
= & \mathrm{A}_{\mathrm{x}} \mathrm{~B}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathrm{~B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \mathrm{~B}_{\mathrm{z}}
\end{array}
$$

USING THE DOT PRODUCT TO DETERMINE THE ANGLE BETWEEN TWO VECTORS

For the given two vectors in the Cartesian form, one can find the angle by
a) Finding the dot product, $A \cdot B=\left(\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathrm{B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \mathrm{B}_{\mathrm{z}}\right)$,
b) Finding the magnitudes ($\mathrm{A} \& \mathrm{~B}$) of the vectors $\boldsymbol{A} \& \boldsymbol{B}$, and
c) Using the definition of dot product and solving for θ, i.e.,
$\theta=\cos ^{-1}[(A \cdot B) /(\mathrm{AB})]$, where $0^{\circ} \leq \theta \leq 180^{\circ}$.

Projection of a Vector along a line

Example 2.

c) Find the component of F parallel to $A B$
d) Perpendicular to $A B$
e) Find the angle between $A B$ and F
c)

$$
\begin{aligned}
& F_{1}=\vec{F} \cdot \vec{u}_{A B} \\
& \vec{F}=400 N\left(-\frac{2}{7} \hat{\imath}-\frac{6}{7} \hat{\jmath}+\frac{3}{7} \hat{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& c(3,0,4) \mathrm{m} \quad \vec{u}_{A B}=\frac{5 \hat{\imath}+6 \hat{\jmath}+1 \hat{k}}{\sqrt{5^{2}+6^{2}+1^{2}}}=0.635 \hat{\imath}+0.762 \hat{\jmath}+0.127 \hat{k} \\
& F_{11}=\vec{F} \cdot \vec{u}_{A B}=400 N\left[\left(-\frac{2}{7}\right)(0.635)+\left(-\frac{6}{7}\right)(0.762)+\left(\frac{3}{7}\right)(0.127)\right] \\
& F_{11}=-312 \mathrm{~N} \Leftrightarrow \Rightarrow \text { opp. } \vec{u}_{A B} \quad \vec{F}_{11}=F_{11} \vec{u}_{A B}=\underbrace{-198 \hat{\imath}-238 \hat{\jmath}-40 \hat{k}} \mathrm{~N}
\end{aligned}
$$

d) $\vec{F}_{\perp}=\vec{F}-\vec{F}_{11}=(-114 \hat{\imath}-343 \hat{\jmath}+171 \hat{k})-\left({ }^{\circ}\right)=84 \hat{\imath}-105 \hat{\jmath}+211 \hat{k} N$
e) $\theta=\cos ^{-1}\left(\vec{u}_{F} \cdot \vec{u}_{A B}\right)=\cos ^{-1}\left(\frac{\vec{F} \cdot \vec{u}_{A B}}{F}\right)=\cos ^{-1}\left(\frac{-312}{400}\right)=141^{\circ}\binom{$ or }{$39^{\circ}}$

EXAMPLE

Given: The force acting on the pole
Find: The angle between the force vector and the pole, and the magnitude of the projection of the force along the pole OA.

Plan:

1. Get $r_{O A}$
2. $\theta=\cos ^{-1}\left\{\left(\boldsymbol{F} \cdot r_{O A}\right) /\left(\mathrm{Fr}_{\mathrm{OA}}\right)\right\}$
3. $\mathrm{F}_{\mathrm{OA}}=\boldsymbol{F} \cdot \boldsymbol{u}_{O A}$ or $\mathrm{F} \cos \theta$

EXAMPLE

(continued)

$$
\begin{aligned}
& r_{O A}=\{2 i+2 j-1 k\} \mathrm{m} \\
& \mathrm{r}_{\mathrm{OA}}=\left(2^{2}+2^{2}+1^{2}\right)^{1 / 2}=3 \mathrm{~m} \\
& F=\{2 i+4 j+10 k\} \mathrm{kN} \\
& \mathrm{~F}=\left(2^{2}+4^{2}+10^{2}\right)^{1 / 2}=10.95 \mathrm{kN}
\end{aligned}
$$

$$
F \cdot r_{O A}=(2)(2)+(4)(2)+(10)(-1)=2 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
\theta=\cos ^{-1}\left\{\left(F \cdot r_{O A}\right) /\left(\mathrm{Fr}_{\mathrm{OA}}\right)\right\}
$$

$$
\theta=\cos ^{-1}\{2 /(10.95 * 3)\}=86.5^{\circ}
$$

$$
u_{O A}=r_{O A} / \mathrm{r}_{\mathrm{OA}}=\{(2 / 3) i+(2 / 3) j-(1 / 3) k\}
$$

$$
\mathrm{F}_{\mathrm{OA}}=\boldsymbol{F} \cdot \boldsymbol{u}_{O A}=(2)(2 / 3)+(4)(2 / 3)+(10)(-1 / 3)=0.667 \mathrm{kN}
$$

Or $\mathrm{F}_{\mathrm{OA}}=\mathrm{F} \cos \theta=10.95 \cos \left(86.51^{\circ}\right)=0.667 \mathrm{kN}$

CONCEPT QUIZ

1. If a dot product of two non-zero vectors is 0 , then the two vectors must be ___ to each other.
A) parallel (pointing in the same direction)
B) parallel (pointing in the opposite direction)
C) perpendicular
D) cannot be determined.
2. If a dot product of two non-zero vectors equals -1 , then the vectors must be \qquad to each other.
A) parallel (pointing in the same direction)
B) parallel (pointing in the opposite direction)
C) perpendicular
D) cannot be determined.

GROUP PROBLEM SOLVING

Given: The force acting on the pole.
Find: The angle between the force vector and the pole, and the magnitude of the projection of the force along the pole AO.

Plan:

1. Get $r_{A O}$
2. $\theta=\cos ^{-1}\left\{\left(\boldsymbol{F} \cdot r_{A O}\right) /\left(\mathrm{Fr}_{\mathrm{AO}}\right)\right\}$
3. $\mathrm{F}_{\mathrm{OA}}=\boldsymbol{F} \cdot \boldsymbol{u}_{\mathrm{A} O}$ or $\mathrm{F} \cos \theta$

ATTENTION QUIZ

1. The Dot product can be used to find all of the following except \qquad .
A) sum of two vectors
B) angle between two vectors
C) component of a vector parallel to another line
D) component of a vector perpendicular to another line
2. Find the dot product of the two vectors P and Q.

$$
\begin{aligned}
& P=\{5 i+2 j+3 k\} \mathrm{m} \\
& Q=\{-2 i+5 j+4 k\} \mathrm{m} \\
& \begin{array}{lll}
\text { A) }-12 \mathrm{~m} & \text { B) } 12 \mathrm{~m} & \text { C) } 12 \mathrm{~m}^{2} \\
\text { D) }-12 \mathrm{~m}^{2} & \text { E) } 10 \mathrm{~m}^{2} &
\end{array}
\end{aligned}
$$

End of the Lecture

Let Learning Continue

