Internal Forces (Ch 7)

Section individual member at desired point

Types of Internal Forces

For 2D systems

(coplanar Fs, z-symmetry)

Sign Conventions

Axial Force, N:

Positive – tension Negative – compression

Shear Force, V:

Positive – causes beam axis to rotate clockwise Negative – causes beam axis to rotate counterclockwise

Bending Moment, M:

Positive – bends beam concave up ("smile") Negative – bends beam concave down ("frown")

Example1. Find the internal forces and moment at C.

$$\sum M_{B} = 0 = F(\frac{1}{4}L) - V_{c}(\frac{3}{4}L) - M_{c} \Rightarrow M_{c} = \frac{1}{4}FL - (\frac{1}{4}F)(\frac{3}{4}L) = \frac{1}{16}FL^{1}$$

1

Different FBD's give same magnitude and sign of internal forces and bending moment.

$$\left(\frac{2}{3}3 \text{ m}\right) \xrightarrow{1}_{120} \frac{1}{2} (3 \text{ m})(30 \text{ N/m}) = 45 \text{ N}$$

$$M_B = M_B = M_B$$

$$M_B = M_B = M_B$$

$$M_B = M_B = M_B$$

$$\begin{aligned} & \leq F_x = 0 \Rightarrow N_B = 0 \\ F = a_{4}a = \frac{1}{2}bh = \frac{1}{2}(3m)(30\frac{N}{m}) \\ F = 45N \\ & \chi_F = centrond = \frac{2}{3}(3m) = 2m \\ & \leq F_y = 0 = 120N - 45N - V_B \\ & \Rightarrow V_B = 75N \\ & \leq M_A = 0 = -45N(2m) - V_B(3m) \\ & + M_B \end{aligned}$$

Shear and Bending Moment Diagrams

Shear Diagram – graph of V vs. x (position along the beam). Bending Moment Diagram – graph of M vs. x.

- Can be obtained by cutting beam at variable x-values.

0 < x < 2m

 $\Sigma F_y = 0 = 20 \text{ kN} - V \Rightarrow V = 20 \text{ kN}$ $\Sigma M_A = 0 = 88 - Vx + M \Rightarrow M = -88 + 20x$ $M_{z=2} = -48 \text{ kN} \cdot m$ 2 < x < 4m

4 < x < 6m $\sum F_y = 0 = V - B(6 - x)$ $\Rightarrow V = 48 - 8x$

Shear and Moment Diagrams

0 < x < 2m	N = 20 kN
2< x < 4m	N = 16 kN
4 <x<6m< td=""><td>V = 48 - 8×</td></x<6m<>	V = 48 - 8×

 $0 < x < 2m \qquad M = -88 + 20x$ $M_{x=2} = -48 \text{ kN·m}$ $2 < x < 4m \qquad M = -80 + 16x$ $M_{x=4} = -16 \text{ kN·m}$ $4 < x < 6m \qquad M = -4 (6-x)^{2}$ $M_{x=6} = 0$

Example 2: Relations between w, V, M $\omega(x) = -\frac{120}{12}x + 0$ $\omega = -10x = \frac{dV}{dx}$ $\Rightarrow V = V_0 + \int_0^{\infty} -10x \, dx$ $V = 240 - 5x^2$ crosses arkis @ 240-52=0 $\Rightarrow x = \sqrt{240/5} = 6.93$ $\frac{dM}{dx} = V = 240 - 5x^2$ $\Rightarrow M = M_0^7 + 240x - \frac{5}{3}x^3$ $Q_{\chi} = 6.93 \Rightarrow M_{max} = 1109$

Example 3: Determine the Loading

 $0< x < 2 \quad \forall \ const \Rightarrow \omega = 0$ $2< x < 4 \quad \forall \ linear \Rightarrow \omega \ const.$ $slope neg \Rightarrow \omega < 0$ $\frac{dV}{dx} = -\frac{3}{2} = \omega$

0 < x < 2M linear ⇒ V const ⇒ w=0 $M = -2x \Rightarrow V = -2$ 24×4 M parabolic => V linear => W const $\frac{dV}{dx} = \omega \implies V = V_z + \int_z^x \omega dx$ $V = -2 + \omega (x - 2) = \frac{dM}{dx}$ $M = M_2 + \int_{-2}^{x} -2 + \omega(x - 2) dx$ intrepate & use M = - 11 @ x = 4 to solve for w

