FRAMES AND MACHINES

Today's Objectives:

Students will be able to:
a) Draw the free body diagram of a frame or machine and its members.
b) Determine the forces acting at the joints and supports of a frame or machine.

In-Class Activities:

- Check Homework, if any
- Reading Quiz
- Applications
- Analysis of a Frame/Machine
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ

1. Frames and machines are different as compared to trusses since they have \qquad .
A) only two-force members
B) only multiforce members
C) at least one multiforce member D) at least one two-force member
2. Forces common to any two contacting members act with \qquad on the other member.
A) equal magnitudes but opposite sense
B) equal magnitudes and the same sense
C) different magnitudes but opposite sense
D) different magnitudes but the same sense

Frames and Machines

- at least one member is not a two-force body.

Frame - designed to remain stationary and support loads
Machine - designed to move and apply loads
Steps in Analysis:

1. Take note of all two-force members.
2. FBD of entire frame - determine as many external reactions as possible
3. Take frame apart to look at FBD's of individual members:

- Use two-force members to reduce unknowns
- Observe Newton's $3^{\text {rd }}$ Law (Action-Reaction)
- Start with FBD's with 3 or less unknowns (in 2D)

Example 3. FBD for a Machine.

$\underbrace{}_{B C}$

STEPS FOR ANALYZING A FRAME OR MACHINE

1. Draw the FBD of the frame or machine and its members, as necessary.

Hints:

a) Identify any two-force members, b) Forces on contacting surfaces (usually between a pin and a member) are equal and opposite, and, c) For a joint with more than two members or an external force, it is advisable to draw a FBD of the pin.
2. Develop a strategy to apply the equations of equilibrium to solve for the unknowns.

Problems are going to be challenging since there are usually several unknowns. A lot of practice is needed to develop good strategies.

Example 4

Solving for Member BC

$$
\begin{aligned}
f+\sum \mathrm{M}_{\mathrm{B}}=\quad & C y(4)-2000(2)=0 \\
& C y=1000 \mathrm{~N}
\end{aligned}
$$

$+\sum \mathrm{Fy}=\mathrm{Fab} \sin (60)-2000+\mathrm{Cy}=0$
$\mathrm{Fab}=1000 / .866=1150$
$+\sum \mathrm{Fx}=\mathrm{Fab} \cos (60)-\mathrm{Cx}=0$
$\mathrm{Cx}=\mathrm{Fab} \cos (60)=577$

Example 5

Given: A frame and loads as shown.

Find: The reactions that the pins exert on the frame at A, B and C .

Plan:

a) Draw a FBD of members AB and BC .
b) Apply the equations of equilibrium to each FBD to solve for the six unknowns. Think about a strategy to easily solve for the unknowns.

Example 5 (continued)

FEDs of members AB and BC :

Equating moments at A and C to zero, we get:

$$
\begin{gathered}
\zeta+\sum \mathrm{M}_{\mathrm{A}}=\mathrm{B}_{\mathrm{X}}(0.4)+\mathrm{B}_{\mathrm{Y}}(0.4)-1000(0.2)=0 \\
\zeta+\sum \mathrm{M}_{\mathrm{C}}=-\mathrm{B}_{\mathrm{X}}(0.4)+\mathrm{B}_{\mathrm{Y}}(0.6)+500(0.4)=0 \\
\underline{\mathrm{~B}}_{\underline{Y}}=0 \quad \text { and } \quad \underline{\mathrm{B}}_{\underline{X}}=500 \mathrm{~N}
\end{gathered}
$$

EXAMPLE 5 (continued)

FBDs of members AB and BC:

Applying E-of-E to bar AB:
$\rightarrow+\sum \mathrm{F}_{\mathrm{X}}=\mathrm{A}_{\mathrm{X}}-500=0$;
$\uparrow+\sum \mathrm{F}_{\mathrm{Y}}=\mathrm{A}_{\mathrm{Y}}-1000=0$;
$\underline{A}_{\underline{x}}=500 \mathrm{~N}$
$\underline{A}_{\underline{Y}}=1,000 \mathrm{~N}$

Consider member BC:

$$
\begin{array}{lll}
\rightarrow+\sum \mathrm{F}_{\mathrm{X}}=500-\mathrm{C}_{\mathrm{X}}=0 ; & \underline{C}_{\underline{X}}=500 \mathrm{~N} \\
\uparrow+\sum \mathrm{F}_{\mathrm{Y}}=\mathrm{C}_{\mathrm{Y}}-500=0 ; & \underline{\mathrm{C}}_{\underline{Y}}=500 \mathrm{~N}
\end{array}
$$

ATTENTION QUIZ

1. When determining the reactions at joints A, B, and C, what is the minimum number of unknowns for solving this problem?
A) 3
B) 4
C) 5
D) 6

2. For the above problem, imagine that you have drawn a FBD of member AB. What will be the easiest way to write an equation involving unknowns at B ?
A) $\sum \mathrm{M}_{\mathrm{C}}=0$
B) $\sum \mathrm{M}_{\mathrm{B}}=0$
C) $\sum \mathrm{M}_{\mathrm{A}}=0$
D) $\sum \mathrm{F}_{\mathrm{X}}=0$

SIMPLE PULLEY EXAMPLE, EX 6

Given: The Block and tackle supports a 1000 lb load.

Find: The force P necessary for equilibrium.

Plan:

a) Draw FBDs of the two pulleys.
b) Apply the equations of equilibrium and solve for the unknowns.

SIMPLE PULLEY EXAMPLE 6 -- Solved

Note that the tension of a cable around a frictionless pulley is the same on both sides
$\begin{array}{ccc} & \downarrow & \\ P & & \\ P\end{array}$
$+\sum \mathrm{Fy}=2 \mathrm{P}-1000=0$
$P=500$

CONCEPT QUIZ

1. The figures show a frame and its FBDs. If an additional couple moment is applied at C , then how will you change the FBD of member BC at B?
A) No change, still just one force $\left(\mathrm{F}_{\mathrm{AB}}\right)$ at B .
B) Will have two forces, B_{X} and B_{Y}, at B .
C) Will have two forces and a moment at B.
D) Will add one moment at B.

CONCEPT QUIZ (continued)

2. The figures show a frame and its FBDs. If an additional force is applied at D , then how will you change the FBD of member $\underline{\text { BC }}$ at B?
A) No change, still just one force $\left(\mathrm{F}_{\mathrm{AB}}\right)$ at B .
B) Will have two forces, B_{X} and B_{Y}, at B .
C) Will have two forces and a moment at B.
D) Will add one moment at B.
 forces on member CDE.
(1) FBD for whole frame (2) Anolyze

$$
\begin{aligned}
\Sigma F_{y}=0 & =A_{y}-120 \mathrm{~N} \Rightarrow A_{y}=120 \mathrm{~N} \\
\sum M_{A}=0 & =C_{x}(0.4 \mathrm{~m})-120 \mathrm{~N}(0.6 \mathrm{~m}) \\
& \Rightarrow C_{x}=180 \mathrm{~N}
\end{aligned}
$$

120ND
$\sum F_{x}=0=C_{x}+A_{x} \Rightarrow A_{x}=-180 \mathrm{~N}$

$$
\begin{aligned}
\sum F_{y}=0 & =A_{y}-120 \mathrm{~N} \Rightarrow A_{y}=120 \mathrm{~N} \\
\sum M_{A}=0 & =C_{x}(0.4 \mathrm{~m})-120 \mathrm{~N}(0.6 \mathrm{~m}) \\
& \Rightarrow C_{x}=180 \mathrm{~N} \\
\sum F_{x}=0 & =C_{x}+A_{x} \Rightarrow A_{x}=-180 \mathrm{~N}
\end{aligned}
$$

Member $A B D$

$$
\Sigma F_{y}=0=A_{y}+D_{y} \Rightarrow D_{y}=-120 N
$$

Member CDE

$$
\begin{aligned}
\sum M_{E} & =0=C_{x}(0.2 \mathrm{~m})+D_{y}(0.4 m)-D_{x}(0.2 \mathrm{~m}) \\
\Rightarrow D_{x} & =[180(0.2)+(-120)(0.4)] / 0.2 \\
& \Rightarrow D_{x}=-60 \mathrm{~N} \\
E_{x} & \\
\sum F_{x} & =0=C_{x}-D_{x}+E_{x} \Rightarrow E_{x}=-240 \mathrm{~N} \\
\sum F_{y}=0 & =E_{y}-D_{y} \Rightarrow \quad E_{y}=-120 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{B D:}{\sum M_{0}=0} \Rightarrow R \\
& \frac{A C E:}{\sum M_{C}=0 \Rightarrow E}
\end{aligned}
$$

$B D:$

$$
\begin{gathered}
\sum M_{0}=-150(130)+R_{y}(30)=0 \\
R_{y}=150(130) / 30=650 \mathrm{~N}
\end{gathered}
$$

ACE:

$$
\begin{aligned}
\sum M_{c}=0 & =150(130)-R_{y}(100)+E(30) \\
E & =\left[R_{y}(100)-150(130)\right] / 30 \\
E & =1516 \mathrm{~N}
\end{aligned}
$$

Mechanical advantage:

$$
=\frac{1516 \mathrm{~N}}{150 \mathrm{~N}} \cong 10: 1
$$

Example 9

Given: The wall crane supports an external load of 700 lb .

Find: The force in the cable at the winch motor W and the horizontal and vertical components of the pin reactions at $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

Plan:

a) Draw FBDs of the frame's members and pulleys.
b) Apply the equations of equilibrium and solve for the unknowns.

EXAMPLE 9 (continued)

FBD of the Pulley E

Necessary Equations of Equilibrium:

$$
\begin{gathered}
\uparrow+\sum \mathrm{F}_{\mathrm{Y}}=2 \mathrm{~T}-700=0 \\
\underline{\mathrm{~T}}=350 \mathrm{lb}
\end{gathered}
$$

EXAMPLE 9 (continued)

350 lb

$$
\begin{aligned}
\rightarrow+\sum \mathrm{F}_{\mathrm{X}}= & \mathrm{C}_{\mathrm{X}}-350=0 \\
& \underline{\mathrm{C}}_{\underline{X}}=350 \mathrm{lb} \\
\uparrow+\sum \mathrm{F}_{\mathrm{Y}}= & \mathrm{C}_{\mathrm{Y}}-350=0 \\
& \underline{C}_{\underline{Y}}=350 \mathrm{lb}
\end{aligned}
$$

A FBD of pulley C

EXAMPLE 9 (continued)

Please note that member BD is a twoforce member.

A FBD of member ABC

$$
\mathrm{T}_{\mathrm{BD}}=2409 \mathrm{lb}
$$

$$
\uparrow+\sum \mathrm{F}_{\mathrm{Y}}=\mathrm{A}_{\mathrm{Y}}+2409 \sin 45^{\circ}-303.1-700=0
$$

$$
\underline{\mathrm{A}}_{\underline{\mathrm{Y}}}=-700 \mathrm{lb}
$$

$$
\rightarrow+\sum \mathrm{F}_{\mathrm{X}}=\mathrm{A}_{\mathrm{X}}-2409 \cos 45^{\circ}+175-350=0
$$

$$
\underline{\mathrm{A}}_{\underline{\mathrm{x}}}=1880 \mathrm{lb}
$$

EXAMPLE 9 (continued)

A FBD of member BD

At D , the X and Y component are
$\rightarrow+\mathrm{D}_{\mathrm{X}}=-2409 \cos 45^{\circ}=-1700 \mathrm{lb}$
$\uparrow+D_{Y}=2409 \sin 45^{\circ}=1700 \mathrm{lb}$

End of the Lecture

> Let Learning Continue

