FREE-BODY DIAGRAMS, EQUATIONS OF EQUILIBRIUM \& CONSTRAINTS FOR A RIGID BODY

Today's Objective:

Students will be able to:
a) Identify support reactions in 3-D and draw a free body diagram, and,
b) apply the equations of equilibrium.

In-Class Activities:

- Check Homework, if any
- Reading Quiz
- Applications
- Support Reactions in 3-D
- Equations of Equilibrium
- Concept Quiz
- Group Problem Solving
- Attention quiz

READING QUIZ

1. If a support prevents rotation of a body about an axis, then the support exerts a on the body about that axis.
A) couple moment \quad B) force
C) Both A and B.
D) None of the above.
2. When doing a 3-D problem analysis, you have scalar equations of equilibrium.

Enter a number corresponding to your answer.

3D Rigid Body Equilibrium (Ch 5)

$$
\sum \vec{F}=0 \Rightarrow \sum^{F_{x}=0} \quad \sum F_{y}=0 \quad \sum F_{z}=0
$$

$\sum \vec{M}_{P}=0 \Rightarrow \sum M_{P x}=0 \quad \sum M_{P y}=0 \quad \sum M_{P z}=0$

6 equations $\rightarrow 6$ unknowns that can be solved for a single rigid body in 3D

Support Reactions in 3D

roller or smooth surface single F normal to surface

Ball-and-socket joint F_{x}, F_{y} and F_{z}

fixed support
F_{x}, F_{y}, F_{z} and M_{x}, M_{y}, M_{z}
*more complete table in text

Real Supports

The Door Hinge \& "Proper Alignment"

FBD Example 1 in 3D

FBD Example 2 in 3D

Pin at A and cable $B C$.

FBD Example 3 in 3D

CONCEPT QUIZ

1. The $\operatorname{rod} \mathrm{AB}$ is supported using two cables at B and a ball-and-socket joint at A. How many unknown support reactions exist in this problem?
1) 5 force and 1 moment reaction
2) 5 force reactions

3) 3 force and 3 moment reactions
4) 4 force and 2 moment reactions

FBD Example 4 in 3D

A ssume: properly aligned journal
beaning at A
$\Rightarrow 6 \mathrm{rans}$

FBD Example 5 in 3D

Solution to Example 5 in 3D (cont)
Determine the reaction forces at A and the tension in the cable, if $F=120 \mathrm{~N}$.
Find: $R_{A x}, R_{A y}, M_{A x}, M_{A y}, M_{A z}, T_{B C}$

$$
\begin{aligned}
& \vec{F}=-120 N \hat{k} \\
& \vec{T}_{B C}= T_{B C} \vec{u}_{B C}=T_{B C}\left(-\frac{12 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}}{\left.\sqrt{12^{2}+4^{2}+6^{2}}\right)}\right. \\
&= T_{B C}\left(-\frac{6}{7} \hat{\imath}+\frac{2}{7} \hat{\jmath}+\frac{3}{7} \hat{k}\right) \\
& \sum \vec{F}=0=\vec{R}_{A}+\vec{F}+\vec{T}_{B C} \\
& 0=R_{A X} \hat{\imath}+R_{A y} \hat{\jmath}-120 N \hat{k}-\frac{6}{7} T_{B C} \hat{\imath}+\frac{2}{7} T_{B C} \hat{\jmath}+\frac{3}{7} T_{B C} \hat{k} \\
& \Rightarrow \hat{\imath}: R_{A X}=\frac{6}{7} T_{B C} \quad R_{A X}=420 N \\
& \hat{\jmath}: R_{A y}=-\frac{2}{7} T_{B C} \quad R_{A y}=-80 \mathrm{~N} \\
& \hat{k}: \quad 120 N=\frac{3}{7} T_{B C} \Rightarrow T_{B C}=280 \mathrm{~N}
\end{aligned}
$$

Solution to Example 5 in 3D (cont)

$$
\begin{aligned}
& \sum \vec{M}_{B}=0=\vec{r}_{B F} \times \vec{F}+\vec{r}_{B A} \times \vec{R}_{A}+\vec{M}_{A} \\
& 0=-4 \hat{\jmath} \times-120 \hat{k} \\
&+(-12 \hat{\imath}-4 \hat{\jmath}) \times(420 \hat{\imath}-80 \hat{\jmath}) \\
&+M_{A x} \hat{\imath}+M_{A y} \hat{\jmath}+M_{A z} \hat{k} \\
&= 480 \hat{\imath}+960 \hat{k}+1680 \hat{k} \\
&+M_{A x} \hat{\imath}+M_{A y} \hat{\jmath}+M_{A z} \hat{k} \\
& \Rightarrow M_{A x}=-480 \mathrm{lbf} \\
& M_{A y}=0 \\
& M_{A z}=-2640 \mathrm{lbft}
\end{aligned}
$$

Solution to Example 1 in 3D

$$
\begin{aligned}
& \text { Determine the reaction forces at } \mathrm{O} \text { and tension } \\
& \text { in cables } A B \text { and } A C \text { if the plant weighs } 30 \mathrm{lb} \text {. } \\
& \sum \vec{M}_{A}=0=\vec{r}_{A O} \times \vec{R}_{0}=-6 \hat{\jmath} \times\left(R_{0 x} \hat{\imath}+R_{0 y} \hat{\jmath}+R_{0 z} \hat{k}\right)=6 R_{0 \times} \hat{k}-6 R_{0 z} \hat{\imath} \\
& \Rightarrow R_{0 x}=0, R_{0 z}=0 \\
& \sum F_{X}=0=\frac{2}{7} T_{A B}-\frac{2}{7} T_{A C}+R_{O X}^{0} \Rightarrow T_{A B}=T_{A C} \\
& \sum F_{y}=0=-\frac{6}{7} T_{A B}-\frac{6}{7} T_{A C}+R_{0 y} \Rightarrow R_{0 y}=60 \mathrm{lb} \\
& \sum F_{z}=0=\frac{3}{7} T_{A B}+\frac{3}{7} T_{A C}+R A_{B Z}^{\circ}-30 \mathrm{lb} \Rightarrow T_{A B}=T_{A C}=35 \mathrm{lb}
\end{aligned}
$$

ATTENTION QUIZ

1. A plate is supported by a ball-andsocket joint at A, a roller joint at B, and a cable at C. How many unknown support reactions are there in this problem?
A) 4 forces and 2 moments
B) 6 forces

C) 5 forces
D) 4 forces and 1 moment

ATTENTION QUIZ

2. What will be the easiest way to determine the force reaction B_{Z} ?
A) Scalar equation $\sum \mathrm{F}_{\mathrm{Z}}=0$
B) Vector equation $\sum M_{A}=0$
C) Scalar equation $\sum M_{Z}=0$
D) Scalar equation $\sum \mathrm{M}_{\mathrm{Y}}=0$

