
Moment by Integration Example: Find $I_x \& I_y$

Solve for Ix

EXAMPLE

Given: The shaded area shown in the

figure.

Find: The MoI of the area about the

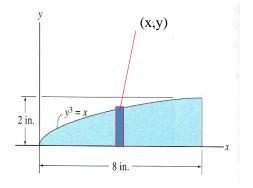
x- and y-axes.

Plan: Follow the steps given earlier.

y (x,y) $y^2 = 4x$ 4 in.

4 in.

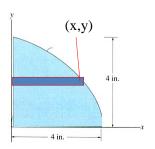
EXAMPLE (continued)


Solve for Iy

Solve for Ix again using vertical strip

GROUP PROBLEM SOLVING

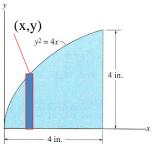
Find: I_x and I_y of the area.


Solve for Ix

Solve for Iy

Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 10.1,10.3,10.4

Summary of Mol calculation

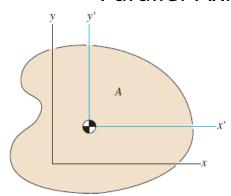


Horizontal Strip

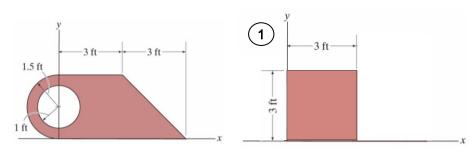
$$I_x = \int y^2 dA$$

if base of strip is on y-axis

$$I_y = \int (1/3) x^3 dy$$


Vertical Strip

$$I_v = \int x^2 dA$$


if base of strip is on x-axis

$$I_{x} = \int (1/3) y^3 dx$$

Parallel-Axis Theorem

Composite Area Example: Find I_x

#	$m{A_i}$ (ft ²)	$\widetilde{oldsymbol{y}}_{oldsymbol{i}}$ (ft)	$\overline{I}_{ix'}$ (ft ⁴)	I_{ix} (ft ⁴)
1				
2				
3				
4				