REDUCTION OF A SIMPLE DISTRIBUTED LOADING

Today's Objectives:

Students will be able to determine an equivalent force for a distributed load.

In-Class Activities:

- Check Homework
- Reading Quiz
- Applications
- Equivalent Force
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ

1. The resultant force $\left(\mathrm{F}_{\mathrm{R}}\right)$ due to a distributed load is equivalent to the ____ under the distributed loading curve, $\mathrm{w}=\mathrm{w}(\mathrm{x})$.
A) centroid B) arc length
$\begin{array}{ll}\text { C) area } & \text { D) volume }\end{array}$
2. The line of action of the distributed load's equivalent force passes through the \qquad of the distributed load.
A) centroid
B) mid-point
C) left edge
D) right edge

APPLICATIONS

A distributed load on the beam exists due to the weight of the lumber.

Is it possible to reduce this force system to a single force that will have the same external effect? If yes, how?

APPLICATIONS

(continued)

The sandbags on the beam create a distributed load.
How can we determine a single equivalent resultant force and its location?

Review -- Single Equivalent Force

Replace force and couple at O with equivalent single force at x_{R} $\mathrm{M}_{\mathrm{R}}=\overbrace{280 \mathrm{Nm}}^{\mathrm{F}_{\mathrm{R}}=(40 \hat{\imath}+50 \hat{\jmath}) \mathrm{N}}$

$$
\begin{gathered}
\sum_{1} \vec{F}=\sum_{2} \vec{F} \Rightarrow \\
\sum_{1} M_{0}=\sum_{2} M_{0} \Rightarrow+280 N_{m}=+F_{R y} x_{R} \Rightarrow x_{R}=\frac{280 \mathrm{Nm}}{50 \mathrm{~N}} \\
x_{R}=5,6 \mathrm{~m}
\end{gathered}
$$

- Represented by pressure function p.
- If load varies only in x direction, use intensity function $w(x)=b p(x)$.

$$
d F=w(x) d x
$$

- Replace distributed load by F_{R} at x_{R}.

$$
\begin{aligned}
& \sum_{1} \vec{F}=\sum_{2} \vec{F} ; \sum_{1} \vec{M}_{0}=\sum_{2} \vec{M}_{0} \\
& F_{R}=\int d F=\int_{x=0}^{x=L} w(x) d x=\text { Area of diagram }
\end{aligned}
$$

Example 1. Determine the single force F_{R} and its x location equivalent to
 the distributed loading shown below.

Find: F_{R}, x_{R}

$$
x_{R}=\frac{\int_{0}^{L} x w(x) d x}{F_{R}}=
$$

$$
\begin{gathered}
F_{R}=6480 N \\
\int_{0}^{9} 160 x^{2} d x / 6480=\left.\frac{160}{6480}\left(\frac{x^{3}}{3}\right)\right|_{0} ^{9}=6 m
\end{gathered}
$$

$$
\begin{aligned}
& F_{R}=A_{\text {rea }}=\frac{1}{2} b h=\frac{1}{2}(9 m)(1440 \mathrm{~N} / \mathrm{m})=6480 \mathrm{~N} \\
& x_{R}=\text { Centroid }=q_{m}-\frac{1}{3}(9 \mathrm{~m})=6 \mathrm{~m}
\end{aligned}
$$

CONCEPT QUIZ

2. If $F_{1}=1 \mathrm{~N}, \mathrm{x}_{1}=1 \mathrm{~m}, \mathrm{~F}_{2}=2$
 N and $\mathrm{x}_{2}=2 \mathrm{~m}$, what is the location of F_{R}, i.e., the distance x.
$\begin{array}{lll}\text { A) } 1 \mathrm{~m} & \text { B) } 1.33 \mathrm{~m} & \text { C) } 1.5 \mathrm{~m}\end{array}$
(D) 1.67 m E) 2 m

Example 2

Given: The loading on the beam as shown.

Find: The equivalent force and its location from point A .

Plan:

1) Consider the trapezoidal loading as two separate loads (one rectangular and one triangular).
2) Find F_{R} and \bar{x} for each of these two distributed loads.
3) Determine the overall F_{R} and \bar{x} for the three point loadings $\square D$

Example 2 (continued)

For the rectangular loading of height $0.5 \mathrm{kN} / \mathrm{m}$ and width 3 m ,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{R} 1} & =0.5 \mathrm{kN} / \mathrm{m} \times 3 \mathrm{~m}=1.5 \mathrm{kN} \\
& =1.5 \mathrm{~m} \text { from A }
\end{aligned}
$$

For the triangular loading of height $2 \mathrm{kN} / \mathrm{m}$ and width 3 m , $\mathrm{F}_{\mathrm{R} 2}=(0.5)(2 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})=3 \mathrm{kN}$ and its line of action is at $\quad=1 \mathrm{~m}$ from A

For the combined loading of the three forces,
$\mathrm{F}_{\mathrm{R}}=1.5 \mathrm{kN}+3 \mathrm{kN}+1.5 \mathrm{kN}=6 \mathrm{kN}$
$\Gamma+\mathrm{M}_{\mathrm{RA}}=(1.5)(1.5)+3(1)+(1.5) 4=11.25 \mathrm{kN} \cdot \mathrm{m}$
Now, $\mathrm{F}_{\mathrm{R}}=11.25 \mathrm{kN} \cdot \mathrm{m}$
Hence, $\bar{x}=(11.25) /(6)=1.88 \mathrm{~m}$ from A .

ATTENTION QUIZ

1. $\mathrm{F}_{\mathrm{R}}=$
$\begin{array}{ll}\text { A) } 12 \mathrm{~N} & \text { B) } 100 \mathrm{~N} \\ \text { (C) } 600 \mathrm{~N} & \text { D) } 1200 \mathrm{~N}\end{array}$
2. $\mathrm{x}=$
A) 3 m
C) 6 m

