## EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, \& FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM

## Today's Objectives:

Students will be able to:
a) Determine the effect of moving a force.
b) Find an equivalent force-couple system for a system of forces and couples.


In-Class Activities:

- Check Homework
- Reading Quiz
- Applications
- Equivalent Systems
- System Reduction
- Concept Quiz
- Group Problem Solving
- Attention Quiz


## READING QUIZ

1. A general system of forces and couple moments acting on a rigid body can be reduced to a $\qquad$ .
1) single force.
2) single moment.
3) single force and two moments.
4) single force and a single moment.
2. The original force and couple system and an equivalent force-couple system have the same $\qquad$ effect on a body.
1) internal
2) external
3 ) internal and external
3) microscopic

## APPLICATIONS



What is the resultant effect on the person's hand when the force is applied in four different ways?

|| ??


## APPLICATIONS (continued)

Several forces and a couple moment are acting on this vertical section of an I-beam.

Can you replace them with just one force and one couple moment at point O that will have the same external effect? If yes, how will you do that?

## Equivalent Systems (4.7-4.8)

- Undergo same rigid body motion.
- Same resultant forces and moments.

principle of transmissibility

couple moments are free vectors



## Establishing Equivalence

## Equivalent.

translates \& rotates about O
translates \& rotates about O
$\mathrm{M}=120 \mathrm{~N} \cdot \mathrm{~m} \quad \mathrm{~F}=20 \mathrm{~N}$
$\left.F_{R}=20 \mathrm{~N} \downarrow \quad M_{R O}=120 \mathrm{Nm}\right)$

$$
\begin{aligned}
& \sum_{1} \vec{F}=\sum_{2} \vec{F} \\
& \sum_{1} \vec{M}_{A}=\sum_{2} \vec{M}_{A}
\end{aligned}
$$

Example 1. The two force systems are equivalent. Determine the forces $F_{A}$ and $F_{B}$ and the couple $M$. Answers: $20 \mathrm{~N}, 50 \mathrm{~N},-30 \mathrm{~N}-\mathrm{m}$


$$
\begin{aligned}
& \sum_{1} F_{x}=\sum_{2} F_{x} \Rightarrow 50 N=F_{B} \\
& \sum_{1} F_{y}=\sum_{2} F_{y} \Rightarrow 60 N-F_{A}=40 N \Rightarrow F_{A}=20 N \\
& \sum_{1} M_{A}=\sum_{2} M_{A} \Rightarrow-F_{A}(3 m)-120 N_{m}=-F_{B}(3 m)+M \quad M \\
& M=(50 N)(3 m)-(20 N)(3 m)-120 N m=-30 N m
\end{aligned}
$$

Example 2: Reduce to an Equivalent Single Force and Single Couple Moment

Replace multiple forces, couples with single force and couple at O


$$
\begin{aligned}
& F_{R x}=\sum F_{i x}=+\left(\frac{4}{5}\right) 50 \mathrm{~N}=40 \mathrm{~N} \\
& F_{R y}=\sum F_{i y}=-20 \mathrm{~N}+40 \mathrm{~N}+\left(\frac{3}{5}\right) 50 \mathrm{~N}=50 \mathrm{~N} \\
& M_{R_{0}}=\sum M_{i o}=-20 \mathrm{~N}(4 \mathrm{~m})+40 \mathrm{~N}(6 \mathrm{~m})+30 \mathrm{~N}(4 \mathrm{~m})=280 \mathrm{Nm}
\end{aligned}
$$

Example 3: Replace a force and couple with a single force

Step 2: Replace force and couple at $O$ with equivalent single force at $x_{R}$



$$
\begin{gathered}
\sum_{1} \vec{F}=\sum_{2} \vec{F} \Rightarrow \\
\sum_{1} M_{0}=\sum_{2} M_{0} \Rightarrow+280 N_{m}=+F_{R y} x_{R} \Rightarrow x_{R}=\frac{280 \mathrm{Nm}}{50 \mathrm{~N}} \\
x_{R}=5,6 \mathrm{~m}
\end{gathered}
$$

Example 4. Determine the single force $F_{R}$ and its location $P$ hat is equivalent to the force system on the left.


$$
\begin{aligned}
& \sum_{1} \vec{F}=\sum_{2} \vec{F} \Rightarrow(-600-500+100-400) \hat{k} N=\vec{F}_{R}=-1400 \hat{k} N \\
& \sum_{1} \vec{M}_{0}=\sum_{2} \vec{M}_{0} \Rightarrow \vec{r}_{O A} \times(-600 \hat{k} N)+\vec{r}_{O B} \times(100 \hat{k} N)+\vec{r}_{O C} \times(-400 \hat{k} N)=\sum_{2} \vec{M}_{0} \\
= & (8 \hat{\imath}) \times(-600 \hat{k})+(6 \hat{\imath}+5 \hat{\jmath}) \times(100 \hat{k})+(10 \hat{\jmath}) \times(-400 \hat{k})=(x \hat{\imath}+y \hat{\jmath}) \times(-1400 \hat{k}) \\
= & 4800 \hat{\jmath}-600 \hat{\jmath}+505 \hat{\imath}-4000 \hat{\imath}=1400 \times \hat{\jmath}-1400 \times \hat{\imath} x=3 \mathrm{~m} \\
& 4800-600=1400 \times \quad 500-4000=-1400 y \quad y=2,5 \mathrm{~m}
\end{aligned}
$$

## ATTENTION QUIZ

1. For this force system, the equivalent system at $P$ is
A) $F_{R P}=40 \mathrm{lb}$ (along +x -dir.) and $\mathrm{M}_{\mathrm{RP}}=+60 \mathrm{ft} \cdot \mathrm{lb}$
B) $F_{R P}=0 \mathrm{lb}$ and $M_{R P}=+30 \mathrm{ft} \cdot \mathrm{lb}$
C) $F_{R P}=30 \mathrm{lb}$ (along +y -dir.) and $\mathrm{M}_{\mathrm{RP}}=-30 \mathrm{ft} \cdot \mathrm{lb}$
D) $F_{R P}=40 \mathrm{lb}$ (along $+x$-dir.) and $M_{R P}=+30 \mathrm{ft} \cdot \mathrm{lb}$

