Vector Moment Analysis (4.2-4.4)

$$
\begin{gathered}
\mathrm{M}_{O}=\mathrm{Fd} \\
\mathrm{M}_{O} \perp \mathrm{~F} \perp \mathrm{~d}
\end{gathered}
$$

- Magnitude of moment is still given by product of force and perpendicular distance.
- Direction is perpendicular to line of F and d.
- Can be difficult to determine in 3D using scalars.
$C=A \times B$

Vector (Cross) Product

$$
\boldsymbol{A} \times \boldsymbol{B}=-(\boldsymbol{B} \times \boldsymbol{A})
$$

Vector product of two vectors \boldsymbol{A} and \boldsymbol{B} is vector \boldsymbol{C} :

1. Line of action of \boldsymbol{C} is perpendicular to plane of \boldsymbol{A} and \boldsymbol{B}.
2. Magnitude of \boldsymbol{C} is $C=A B \sin \theta$
3. Direction of \boldsymbol{C} is obtained from the right-hand rule.

Cartesian Unit Vectors

$\left|\overrightarrow{\mathbf{M}}_{O}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}\right|$

Magnitude of M_{0}

$$
\begin{aligned}
& M_{O}=r F \sin \theta \\
& M_{O}=F d
\end{aligned}
$$

Any position vector \mathbf{r} that connects O to line of F gives same result.

Evaluating Cross Products

$$
\begin{array}{ll}
\overrightarrow{M_{O}}=\vec{r} \times \vec{F} & \vec{r}=r_{x} \hat{\imath}+r_{y} \hat{\jmath}+r_{z} \hat{k} \\
& \vec{F}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k}
\end{array}
$$

(+)
$=\operatorname{det}$

$$
\begin{aligned}
& \hat{\gamma}=\left(r_{y} F_{z}-r_{z} F_{y}\right) \hat{\imath} \\
& r_{y}+\left(r_{z} F_{x}-r_{x} F_{z}\right) \hat{\jmath} \\
& F_{y}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \hat{k}
\end{aligned}
$$

Example 2a: Find moment of F about point $O \vec{M}_{0}$

$$
\begin{aligned}
& \text { H } \\
& \vec{M}_{0}=\vec{r}_{O B} \times \vec{F} \\
& \vec{r}_{O B}=(\hat{\imath}+4 \hat{\jmath}+2 \hat{k}) \mathrm{ft} \\
& \vec{F}=F \vec{u}_{B C} \\
& \vec{u}_{B C}=\frac{\vec{r}_{B C}}{r_{B C}}=\frac{(C-B)}{r_{B C}} \\
& \vec{r}_{a} \times \vec{F}=(\hat{\imath}+4 \hat{\jmath}+2 \hat{k})^{H} \times(12016)\left(\frac{2}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}-\frac{1}{3} \hat{k}\right) \\
& =\begin{aligned}
=f \\
16
\end{aligned}\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 4 & 2 \\
80 & -80 & -40
\end{array}\right|=\xrightarrow{\longrightarrow} \begin{array}{l}
(-160+160) \hat{\imath} \\
+(160+40) \hat{\jmath} \\
+(-80-320) \hat{k}
\end{array} \\
& =\frac{(5-1) \hat{\imath}+(0-4) \hat{\jmath}+(0-2) \hat{k}}{\sqrt{4^{2}+4^{2}+2^{2}}} \\
& \vec{u}_{B C}=\frac{2}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}-\frac{1}{3} \hat{k} \\
& \vec{M}_{0}=(200 \hat{\jmath}-400 \hat{k}) 16 \cdot f t \quad M_{0}=447 \mathrm{ngf}
\end{aligned}
$$

Example Ra': Find moment of F about point O

EXAMPLE \# 3

Given: $\mathrm{a}=3 \mathrm{in}, \mathrm{b}=6$ in and $\mathrm{c}=2 \mathrm{in}$.
Find: Moment of F about point O. Plan:

1) Find $r_{O A}$.
2) Determine $M_{O}=r_{O A} \times F$.

Solution $r_{O A}=\{3 i+6 j-0 k\}$ in

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{O}}=\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
3 & 6 & 0
\end{array}=[\{6(-1)-0(2)\} i-\{3(-1)-0(3)\} j+ \\
& \{3(2)-6(3)\} k] \mathrm{lb} \cdot \mathrm{in} \\
& =\{-6 i+3 j-12 k\} \mathrm{lb} \cdot \mathrm{in}
\end{aligned}
$$

