(Scalar) Moments \& Couples (4.1, 4.4, 4.6)

Moment of a Force (aka, Torque):

measure of the tendency of a force to cause rotation of
a body about an axis.

$$
\mathrm{M}_{0}=\mathrm{Fd}
$$

Note direction: axis of rotation is perpendicular to directions of both F and d .

Not all forces create a moment about point 0.

This F creates a tendency for translation, but not rotation about point O.

This F creates a tendency for rotation, but not around the z -axis.

The Right-Hand Rule

Sign Convention:

Sense of M_{O} vector is given by thumb of right hand.

Hence in 2D, counterclockwise is positive (thumb out of plane).

Sense of \mathbf{M}_{O}

Example 1:

Determine the sense of M_{O} for each example below:

Magnitude of M_{O}
$\boldsymbol{*}_{\text {Note: }}$ F doesn't have to cause actual rotation to create M , just a tendency to rotate.

$$
\begin{gathered}
\vec{M}_{0}=(-200 \mathrm{Nm}) \hat{k} \quad M_{O}=F d \\
\left.M_{0}=(100 \mathrm{~N})(2 \mathrm{~m})=200 \mathrm{Nm}\right) \\
=-200 \mathrm{Nm} \\
\left.M_{0}=(100 \mathrm{~N})(5 \mathrm{~m})=500 \mathrm{Nm}\right) \\
=-500 \mathrm{Nm}
\end{gathered}
$$

$$
\begin{array}{ll}
M_{0}=F d & d=5 \mathrm{~m} \sin 30^{\circ}=2.5 \mathrm{~m} \\
M_{0}=(100 \mathrm{~N})(2.5 \mathrm{~m})=250 \mathrm{Nm}
\end{array}
$$

Example 2: Determine M_{O} for each example

$$
=21 \mathrm{kNm}
$$

$$
\left.M_{0}=F d=4016\left(4+2 \cos 30^{\circ}\right) A=\ldots \omega_{1}\right)
$$

$$
M_{0}=F d=50 \mathrm{~N}(0.75 \mathrm{~m})=37.5 \mathrm{Nm}
$$

Moments of Multiple Forces Principle Of Moments
For coplanar forces, resultant
moment about a point equals sum of individual moments caused by each of the forces about that point.

$$
\begin{aligned}
& M_{R_{O}}=\sum M_{i_{O}}=\sum F_{i} d_{i} \\
& M_{10}=F_{1} d_{1}=(50 \mathrm{~N})(2 \mathrm{~m})=-100 \mathrm{Nm} \\
& M_{20}=F_{2} d_{2}=(30 \mathrm{~N})(5 \mathrm{~m})=-150 \mathrm{Nm} \\
& M_{30}=F_{3} d_{3}=(100 \mathrm{~N})(2.5 \mathrm{~m})=-250 \mathrm{Nm} \\
& M_{R 0}=-500 \mathrm{Nm} \text { or } 500 \mathrm{Nm} \text {) }
\end{aligned}
$$

Moment of a Couple

Couple:

- Two parallel forces with equal magnitudes, opposite directions, separated by a distance.
- They generate a pure rotation (no translation).

Moment of Couple $\quad \mathbf{M}=\mathbf{F} \mathbf{d}$

Equivalent Couples

$$
\begin{aligned}
M_{0}=M_{10}+M_{20} & =-120 \mathrm{Nm}_{\mathrm{m}}+180 \mathrm{Nm} \\
& =60 \mathrm{Nm}
\end{aligned}
$$

$$
M_{0}=-60 \mathrm{Nm}_{\mathrm{m}}+120 \mathrm{Nm}_{\mathrm{m}}=60 \mathrm{Nm}^{11}
$$

$$
M_{0}=0+60 N_{m}=60 \mathrm{Nm}^{1}
$$

A Couple Moment is a Free Vector

Example 4: Determine the couple moment created by the forces shown.

