

AP Induction Week Course
Introduction to Engineering Computation

 Lecture Manual
 MATLAB programming

 Chapters 1 to 5

Department of Engineering Science

MATLAB Lecture Manual Contents

Chapter 1: An Introduction to MATLAB .. 2

Chapter 2: 1D Arrays, Problem Solving ... 17

Chapter 3: Functions, Problem Solving and Debugging .. 30

Chapter 4: Logical operators and conditional statements ... 43

Chapter 5: Loops .. 63

Appendix: MATLAB Command Reference .. 75

2

Chapter 1: An Introduction to MATLAB

MATLAB is a an extremely useful piece of mathematical software
that is used by engineers to help them solve problems. MATLAB
is short for MATrix LABoratory. MATLAB can be used as an
advanced calculator and graphing tool for engineering
computation. It can also be used as a programming language to
develop software and it has great support for manipulation of
matrices.

Learning outcomes

After working through this chapter, you should be able to:

 Understand why you are taking this course

 Understand why we are teaching you MATLAB

 Use MATLAB as a calculator

 Create and use variables

 Write a script file

 Get input from the user and display output

 Understand the importance of commenting

 Write simple comments

Why learn to program?

Computers are important tools for modern-day engineering. Computers allow engineers to perform

time consuming tasks quickly and hence solve a wide range of interesting problems. Computers also

make it possible for us to visualise our models, allowing us to interpret our results. If no existing

software is able to help you solve your problem you may need to develop your own software by

writing computer programs. Writing computer programs is an important skill that is relevant to all

branches of engineering.

Image: Pressure in an oil reservoir

Computer programs can be
used to:

 Solve engineering
problems

Visualise the solutions

3

An illustration: solving equations

To illustrate how important computers can be to solving engineering problems, consider the relatively

simple task of solving a system of simultaneous equations. You are likely familiar with several

methods for solving simultaneous equations by hand. If you have taken MM1 you will have

encountered solving by both Gaussian elimination and Matrix methods.

Two equations

Consider the task of solving the following equations:

You should easily be able to solve these by hand to get



x 1,y  2

Three equations

Consider the task of solving the following equations:



2x y 2z  4

x y z  1

y 2z  4

With a little more effort we can solve these by hand to get



x 1.2,y  2.8,z 0.6

Ten equations

Now consider the task of solving the following equations:



2x1 x2 3x4 x6 2x7 3x9 x10  1

x1 x3 3x4 2x5 x6 3x9 x10  2

3x1 3x2 x3 x4 2x5 3x6 x7 2x8 3x9 x10  1

2x1 3x2 3x3 2x4 x5 2x6 x7 x10  3

3x1 x2 x3 2x5 x6 x7 3x8 x9 2x10  2

x1 x3 x4 2x5 x7 3x8 x9 2x10  3

x1 x2 x4 x5 x6 x7 2x8 x9 2x10  1

3x1 x2 x3 3x4 x5 3x6 x10  0

x1 2x2 x3 x4 3x5 x6 x8 x9 x10  1

x1 2x2 3x4 x5 3x6 x7 x8 x9  2

Could you solve these by hand? In theory it is possible but it would take a long time and you would

need to be extremely careful as the chances of making a simple arithmetic error in the resulting pages

of algebra is quite high.



2x  y  4

x  y  1

4

Solving equations with a computer

This system can be solved with relatively little effort in MATLAB.

Even more equations

Sometimes engineers need to solve not 10 or even 100 equations, but systems with 10,000 or 100,000

equations. This can be done very quickly using a computer.

Solving systems of linear equations is a common problem in many branches of engineering, for

example you will need to solve systems of linear equations for problems related to:

 Operations research

 Mechanics and dynamics

 Electrical Circuits

 Chemical reactions

Quickly solving large systems of equations is just one of the many tasks that MATLAB can

accomplish with very little effort from the programmer.

5

Why use MATLAB?

There are a large range of different programming languages available to choose from. We have

chosen to introduce you to MATLAB first for a number of reasons:

 MATLAB is an easy introduction language for learning how to program.

 MATLAB provides a “quick-and-easy” development environment.

 MATLAB is very useful in many engineering contexts.

 MATLAB is used in industry.

Programming with MATLAB

Programming is a transferable skill. Basic programming concepts are common to almost all

programming languages. The syntax may change but is usually similar. Learning to program in

MATLAB will make it much easier to pick up just about any other language.

MATLAB is platform independent. You can write the software once for several different operating

systems including both Windows and Mac platforms. If you rely only on the core functionality of

MATLAB you will also be able to run your programs under Linux, using Octave.

MATLAB can be linked to other software. For example it can be used with programs written in other

popular languages such as C/C++, Java or Fortran.

MATLAB in your degree

In Mathematical Modelling 2 and 3 you will need to use MATLAB to solve applied mathematical

models. Other courses in structural analysis, electrical circuits and systems and control also use

MATLAB.

In MM2, MM3 and many other courses you may like to use MATLAB to check your calculations and

plot results.

Many students use MATLAB to write programs for their 4
th

 year project.

MATLAB is a marketable skill

Engineering job advertisements can and do mention MATLAB as a required skill. Computer

programming experience is also often mentioned as a required or desirable skill.

6

MATLAB as a calculator

MATLAB can be used in a wide range of ways to help you solve engineering problems. We will begin

by using MATLAB as an advanced calculator. In particular we will learn:

 To express mathematics in a form suitable for MATLAB.

 To use built-in mathematical functions in calculations.

 To use variables in calculations

This is the window that appears when you start MATLAB.

Entering commands

You can enter expressions at the command line in the command window and evaluate them right

away.

Previous command

Next command

The >> symbols indicate the command prompt, where commands are typed.

>> 3 + 5 * 8

ans =

 43

>> 3*(4+2)

ans =

 18

7

Mathematical Operators

Operator MATLAB Algebra

 + 5 + 4 = 9

 - 5 - 4 = 1

 * 5 * 4 = 20

 / 5 / 4 = 1.25

ab a^b 5^4 = 625

Order of operations

MATLAB follows the usual BEDMAS order of operations when performing calculations.

B = Brackets
E = Exponentials
D = Division
M = Multiplication
A = Addition
S = Subtraction

>> 3*4 + 2

ans =

 14

>> 3*(4+2)

ans =

 18

Be careful using brackets - check that opening and closing brackets are matched up correctly.

Built-in functions

Like a calculator, MATLAB has many built-in mathematical functions. The MATLAB command

reference at the rear of this manual lists some of the functions available. To call a function is simple:

Note the use of brackets around the function’s input argument. There

should be no spaces between the function name and the opening bracket.

Function names are case sensitive and all built-in functions should be

called using lower case letters, even though MATLAB help files show the

function name in capitals.

You can search for and find out more about the available functions by

using MATLAB’s help.

>> sqrt(4)

ans =

 2

>> abs(-3)

ans =

 3

8

>> help gives command line help

>> doc gives GUI help

>> doc exp

9

Variables

In algebra we use variables so calculations are easily represented. We can also use variables with

MATLAB.

Algebra



c  (f  32) 
5

9

f 100  c  37.8

f  32  c  0

MATLAB

>> f = 100

f =

 100

>> c = (f-32)*5/9

c =

 37.7778

>> f = 32

 f = 32

>> c = (f-32)*5/9

c =

 0

You can think of variables as named locations in the computer's memory in which a number can be

stored. It may help to think of your computer memory as a large set of “boxes” in which numbers can

be stored. Boxes can be labeled with a variable name and the values placed in the boxes can be

inspected and changed.

>> a = 3
a =
 3

Assigning variables a value

The equals sign is used to assign values to variables. Variable assignment either creates the variable

OR, if it already exists, changes the variable value.

>> a = 2

a =

 2

>> 3 = a

??? 3 = a

 |

Error: …

Assignment is always left to right:

>> a = some expression

10

Naming variables

Variable names may only use alphanumeric characters and the underscore. They should not begin

with a number and cannot include spaces.

If using a single letter to identify a variable then use a lower case name for scalar values. We will

reserve upper case letters for matrices, to be consistent with standard mathematical notation.

It is a good programming practice to give variables descriptive names, so that it is possible to tell at a

glance what a variable contains. If using word(s), the first letter should be lower case, and the first

letter of subsequent words should be upper case:

 numberOfStudents = 570;

 taxRate = 0.33;

This makes variable names easier to read.

Special variables

MATLAB has some special variables:

 ans is the result of the last calculation

 pi represents 

 Inf represents infinity

 NaN stands for not-a-number and occurs when an expression is undefined e.g. division by zero

 i, j represent the square root of -1 (necessary for complex numbers)

Calculations with variables

Suppose we want to calculate the volume of a cylinder.

Its radius and height are stored as variables in memory with sensible names. We can then calculate the

volume in MATLAB as follows:

>> volume = pi * radius^2 * height

Visually:

11

Script Files

You can save a sequence of commands so that you may reuse them. To save commands we place

them in a script file. When a script file is run each line of the file is executed in turn. This has the

same effect as typing each line in the command window.

Script files need to be saved with the file extension “.m”. Script file names can only use letters,

numbers and the underscore character. Eg vol_surf.m is a valid name.

There are some important limitations to be aware of when naming your files.

File names should NOT:

 include spaces

 start with a number

 use the same name as an existing command

If you do any of the above you will get unusual errors when you try and run your script.

MATLAB includes an editor for working on script files:

Once you have saved a script file you can can run the sequence of commands from the file by typing

the filename, without the “.m” extension.

Eg

>> vol_surf

r =

 5

h =

 10

volume =

 785.3982

area =

 471.2389

>>

12

Commenting

Lines that start with the % character are not executed by MATLAB. This means you can add

comment lines to your file which explain the purpose of various commands. Comments are VERY

IMPORTANT. They help people understand what the code is doing and why.

Your code may make sense to you now but it is important to realise that you may not be the only

person who needs to understand your code. Most code written in the real world will need to be

modified by either yourself or someone else at some point in the future. These modifications are

usually done to improve performance, add extra functionality or fix errors. A program written months

or years ago can be very hard to understand without good commenting, even when you were the

person who originally wrote it!

All script files MUST be commented. Lab tasks will NOT be checked off if you have not commented

your files.

Header comments

Every script file should have a header comment at the top of the file which indicates the purpose of the

file and who wrote it.

% ConvertTemp.m converts the freezing and boiling points for

% water from degrees Celsius (c) to Fahrenheit (f)

% Author: Peter Bier

Including the author’s name is important as if someone else is trying to use your code they then know

who to ask for help. MATLAB uses this header comment to generate help. Typing help and your

filename will display your header comments. Eg

>> help ConvertTemp

ConvertTemp.m converts the freezing and boiling points for

water from degrees Celsius (c) to Fahrenheit (f)

Author: Peter Bier

Other comments

You should add comments to any sections of code which are not straight forward to understand. This

may include comments that explain what is being done or relate to how to use MATLAB functions

you are not very familiar with. Aim to write useful comments.

The following is an example of useless commenting and poor choice of variable names:

% set x to zero

x = 0

% calculate y

y = x * 9/5 + 32

13

The above comments do not really help you understand anything about the code. We can already see

that x is being set to zero and that y is being calculated. We are also given no clues what x and y

represent.

The following is far more useful and actually helps a reader understand what the code is doing:

% Convert freezing point of water from celsius to Fahrenheit

c = 0

f = c * 9/5 + 32

% Convert boiling point of water from celsius to Fahrenheit

c = 100

f = c * 9/5 + 32

From these comments it is obvious what the variables c and f are meant to represent and it is clear

what the calculation of f is achieving.

The complete script file is as follows:

% ConvertTemp.m converts the freezing and boiling points for

% water from degrees Celsius (c) to Fahrenheit (f)

% Author: Peter Bier

% Convert freezing point of water from celsius to Fahrenheit

c = 0

f = c * 9/5 + 32

% Convert boiling point of water from celsius to Fahrenheit

c = 100

f = c * 9/5 + 32

14

Basic user interaction: Input/Output

Script files are more useful if they can interact with users, prompting them to enter values and then

displaying relevant results. We want to be able to get input from the user and then display the

appropriate output.

This is easy to do using the built-in input and disp commands.

% CalculateRectArea.m calculates the area for

% a rectangle with dimensions provided by the user

% Author: Peter Bier

% prompt user to enter height and width

height = input('Enter the height of the rectangle: ')

width = input('Enter the width of the rectangle: ')

% note the semi-colon on the end of the line

% this supresses the output of the command, the command is

% executed but the result of the calculation is not displayed

area = height * width;

disp('The area of the rectangle is')

disp(area)

Note that the input function takes as an argument a string of characters enclosed in single quotes.

This string of characters could include words, numbers and punctuation characters. When MATLAB

executes an input command the entire contents of this string are printed to the screen and then the

computer will wait for the user to type something and press enter.

The disp function can either take a string of characters enclosed in single quotes OR a variable.

If it is called with a string of characters the characters enclosed in quotes are printed to the screen. If it

is called with a variable then the value of the variable is displayed.

When this program is run it produces the following output:

>> CalculateRectArea

Enter the height of the rectangle: 3

height =

 3

Enter the width of the rectangle: 4

width =

 4

The area of the rectangle is

 12

15

Chapter 1 Summary Program

We can now write commented simple script files that get input from a user, use MATLAB as a

calculator and then display results back to the user.

For example, the following program calculates the final result for a 131 student based on their course

work and exam marks.

% Calculate131Result.m calculates the final result for a

% student with a course work and final exam mark

% entered by the user

% Author: Peter Bier

% get course and exam mark from user

c = input('Please enter the course work mark: ')

e = input('Please enter the exam mark: ')

courseAverage = 1 / 2 * (c + e)

% Neither coursework nor exam mark may raise the average by

% more than 10 percent, so the course work and exam marks

% set an upper limit on the possible mark that can be achieved

% calculate upper limits

cmax = c + 10

emax = e + 10

% the final mark cannot be above either of the upper limits,

% so it will be the minimum of the course average and the

% two upper limits

% We use the min function to calculate the minimum of these

% three values. The input argument for the min function is

% a list of values enclosed in square brackets and separated

% by commas.

% note we have supressed the output of the min function

% calculation with a semi-colon on the end

final_mark = min([courseAverage, cmax, emax]);

disp('Final mark is ')

disp(final_mark)

16

An example of running this program is shown below (user input is in bold):

>> Calculate131Result

Please enter the course work mark: 38

c =

 38

Please enter the exam mark: 62

e =

 62

courseAverage =

 50

cmax =

 48

emax =

 72

Final mark is

 48

17

Chapter 2: 1D Arrays, Problem Solving

In this chapter we introduce the basics of working with 1D arrays. An array is a variable that can hold

multiple values.

Recall that the reason we are learning how to develop software is so that we may write computer

programs to solve problems. When confronted with a new problem it can be tricky to know how to

approach it so we will outline a simple five step method that can be used to help develop a computer

program to solve a problem.

Learning outcomes

After working through this chapter, you should be able to:

 Explain the concept of a 1D array

 Create and manipulate 1D arrays

 Draw plots of 1D arrays

 Use 1D arrays in programs

 Outline the five steps for problem solving

 Use the five steps to solve a problem

1D arrays

So far we have dealt with MATLAB variables that hold a single value. We can also create MATLAB

arrays that hold multiple values.

Arrays are useful for storing lists of values (1D arrays) or tables of values (2D arrays). They are also

ideal for representing vectors (1D arrays) and matrices (2D arrays)

If a scalar variable (for a single value) is like a cardboard box, then a 1D array variable is like a filing

cabinet. Each drawer of the filing cabinet can store a value.

>> B=[3, 7, 2, 1]

B =

 3 7 2 1

18

Creating 1D arrays

To create an array we can assign a list of values to a variable. The values need to be enclosed by

square brackets and separated by a comma or a space.

>> dailyHighs = [10, 11, 13, 12, 19, 18, 17]

dailyHighs =

 10 11 13 12 19 18 17

>> dailyLows = [3 2 4 1 5 6 4]

dailyLows =

 3 2 4 1 5 6 4

Accessing array elements

You can access or change a particular array element using round brackets.

>> dailyHighs

dailyHighs =

 10 11 13 12 19 18 17

>> dailyHighs(2)

ans =

 11

>> dailyHighs(2) = 14

dailyHighs =

 10 14 13 12 19 18 17

Extending arrays

You can add extra elements by creating them directly using round brackets or by concatenating them

(adding them onto the end).

>> dailyHighs

dailyHighs =

 10 14 13 12 19 18 17

>> dailyHighs(8) = 12

dailyHighs =

 10 14 13 12 19 18 17 12

>> dailyHighs = [dailyHighs, 14]

dailyHighs =

 10 14 13 12 19 18 17 12 14

19

Default array elements

If you don’t assign array elements, MATLAB gives them a default value of 0

>> dailyHighs

dailyHighs =

 10 14 13 12 19 18 17 12 14

>> dailyHighs(12) = 10

dailyHighs =

 10 14 13 12 19 18 17 12 14 0 0 10

Using arrays in programming

The main use for arrays in programming is data storage. Rather than creating a large number of

variables to store related values, we can use a single array to store the values.

Some examples of where you would use an array for data storage are as follows:

 keeping track of the trajectory of a basketball

 storing the stress along a beam

 storing pressures inside the heart

Using Arrays in MATLAB

MATLAB was originally written for use with arrays and subsequently it is very good at dealing with

them. MATLAB provides lots of special array functionality to make it easier to create and manipulate

arrays. Using arrays and MATLAB functions allows repetitive calculations to be done quickly. It

also allows us to write compact programs.

Automatic 1D Arrays

There are a number of ways to create 1D arrays automatically. The colon operator and the

linspace function are particularly useful

Using the colon operator, you can specify an array that contains a sequence of increasing or decreasing

values. A start and stop value are required.

>> x = 0:10

x =

 0 1 2 3 4 5 6 7 8 9 10

The colon operator creates an array of elements beginning with the start value and ending with the

stop value. By default the values will increase by a step size of 1. You can specify a different step

size if you prefer as follows:

>> x = 0:2:10

x =

 0 2 4 6 8 10

20

The linspace function is a convenient function for creating an array that contains a sequence with

a specific number of elements. The input arguments for the linspace function are the start value,

stop value and number of elements to create. When passing inputs to a function the order is important,

so you must pass in first the start value then the stop value and finally the number of elements:

>> t = linspace(0,10,7)

t =

 0 1.6667 3.3333 5.0000 6.6667 8.3333 10.0000

>>

The above command has created a list of 7 points spaced evenly between 0 and 10.

Array Slicing

It is possible to access several elements of an array at once using array slicing. Instead of using a

single value to index the array we can use another array. For example to pull out the 2
nd

, 4
th

 and 6
th

elements of the dailyHighs array we can do the following:

>> dailyHighs

dailyHighs =

 10 14 13 12 19 18 17 12 14 0 0 10

>> dailyHighs([2,4,6])

dailyHighs =

 14 12 18

The colon operator can be particularly handy when you wish to pull out a sequential slice of an array:

>> dailyHighs

dailyHighs =

 10 14 13 12 19 18 17 12 14 0 0 10

>> dailyHighs(3:5)

dailyHighs =

 13 12 19

In the above example we are displaying the 3
rd

, 4
th

 and 5
th

 elements, as the colon operator has been

used to create the array [3, 4, 5].

Array Arithmetic

Arrays of the same length can be added or subtracted to each other. Arrays can also be multiplied by

scalar constants.

>> dailyHighs = [10, 11, 13, 12, 19, 18, 17];

>> dailyLows = [3, 2, 4, 1, 5, 6, 4];

>> dailyRange = dailyHighs - dailyLows

dailyRange =

 7 9 9 11 14 12 13

>> dailyAverage = 0.5 * (dailyHighs + dailyLows)

dailyAverage =

 6.5 6.5 8.5 6.5 12 12 10.5

It is possible to multiply the elements in one array by the corresponding elements in another array.

Here is an example of element by element multiplication:

21

>> heights = [9, 8, 4, 6];

>> widths = [3, 2, 1, 5];

>> areas = heights .* widths

areas =

 27 16 4 30

Note the use of the dot before the multiplication symbol. The dot operator means MATLAB will

perform element by element multiplication rather than attempting matrix multiplication.

Element by element division is also available:

>> heights = [9, 8, 4, 6];

>> widths = [3, 2, 1, 5];

>> ratios = heights ./ widths

ratios =

 3 4 4 1.2

It is also possible to raise every number in an array by a particular power, using element by element

exponentiation.

>> heights = [9, 8, 4, 6];

>> square = heights.^2

square=

 81 64 16 36

Again notice the use of the dot operator.

A common error is to forget to use a dot when manipulating arrays.

If you leave the dot off then MATLAB will attempt to do Matrix multiplication or exponentiation and

will generate the error:

The error is because MATLAB is attempting a matrix multiplication of the two vectors, which is not

valid.

>> heights = [9, 8, 4, 6];

>> widths = [3, 2, 1, 5];

>> areas = heights * widths

??? Error using ==> mtimes

Inner matrix dimensions must agree.

22

Array Functions

Standard mathematical functions (sin, cos, exp, log, etc) can apply to arrays as well as scalars. This

has the same effect as applying the function to each of the elements in turn.

 >> x = [1, 2, 3];

 >> y = sin(x);

y is now [sin(1), sin(2), sin(3)]

When writing functions later in the course remember that your input variables might be arrays

The following example shows how we can use the sin function on an array to produce a plot of this

function.

>> x = linspace(0, 2*pi,9)

x =

 0 0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978

6.2832

>> y = sin(x)

y =

 0 0.7071 1.0000 0.7071 0.0000 -0.7071 -1.0000 -0.7071

0.0000

>> plot(x,y)

The result of running this code is the following plot:

Notice that the curve is not very smooth as we have only used 9 points. If we increase our number of

points we get a smoother curve:

23

We have been a bit naughty leaving our graph unlabelled. You should give all graphs a title and label

the axes. Fortunately this is very easy in MATLAB. We simply use the title, xlabel and ylabel

functions, passing in the labels between single quotes:

>> title('y = sin(x)');

>> xlabel('x values');

>> ylabel('y values');

24

Special Array Functions

Some functions are specialised for use with 1D arrays:

 length(array) gives the number of elements in array

 min(array) gives the minimum value in array

 max(array) gives the maximum value in array

 sum(array) gives the sum of values in array

25

Five steps for problem solving

There are many different problem solving methodologies available. The following five steps provide

a simple framework which can help you approach a problem.

1. State the problem clearly

2. Describe the input and output information

3. Work the problem by hand (or with a calculator) for a simple set of data

4. Develop a solution and convert it to a computer program

5. Test the solution with a variety of data

We will be using these five steps through out this course.

Problem solving worked example

We want to compute the distance between two points in a plane

Step 1: State the problem clearly

Compute the straight-line distance between two points in a plane.

Step 2: Describe the input and output information

Our inputs are the information given that we require to solve the problem. Note that sometimes we

will be given irrelevant information, so not all given information may be required.

Our outputs are the values we need to compute.

It is often helpful to draw an I/O diagram. I/O = Input/Output

26

Step 3: Work the problem by hand

Working the problem by hand is a very important step. Use a calculator if necessary.

Don’t skip this step, even for a simple problem. If you cannot do this step:

 Read the problem again

 Consult reference material

 Diagrams can be useful

Working the problem by hand will help you understand what steps need to be taken to solve the

problem. It will also give you a known solution value for a simple data set, which you can use later to

test your program.



distance  (side1)
2  (side2)2

 (6 2)2  (4 1)2

 42  32  16 9  25

 5

27

Step 4: Develop a solution and convert it to a computer program

Decompose the problem into a set of steps and write pseudocode or a flowchart for code. Then write

the code.

Simple problems give simple steps. Complex problems give complex steps.

If we are dealing with a complex problem we still decompose the problem into a series of steps. Each

complex step may also require the problem solving process. We will discuss how to create

pseudocode and flowcharts for complex problems later in the course.

Pseudocode

1. Get x- and y-values for two points

2. Compute length of two sides of right angle triangle generated by points

3. Use hypotenuse calculation to get distance

4. Display the distance

% CalculateDistance.m calculates the distance between two

% points p1 and p2 on a plane

% Author: Peter Bier

% get x and y values for two points

x1 = input(‘Please enter the x coord of point 1: ’);

y1 = input(‘Please enter the y coord of point 1: ‘);

x2 = input(‘Please enter the x coord of point 2: ’);

y2 = input(‘Please enter the y coord of point 2: ‘);

% compute length of two sides of right angle triangle

% generated by points

side1 = x2 - x1;

side2 = y2 - y1;

% Use hypotenuse calculation to get distance

d = sqrt(side1^2 + side2^2);

% Display the distance

disp(‘The distance between the two points is’);

disp(d);

Step 5: Test the solution with a variety of data

Test using hand worked example. Also test with other data. We need to verify that our code works

correctly by testing it with a range of data.

>> CalculateDistance

Please enter the x coord of point 1: 2

Please enter the y coord of point 1: 1

Please enter the x coord of point 2: 6

Please enter the y coord of point 2: 4

The distance between the two points is

 5

28

>> CalculateDistance

Please enter the x coord of point 1: 0

Please enter the y coord of point 1: 0

Please enter the x coord of point 2: 1

Please enter the y coord of point 2: 1

The distance between the two points is

 1.4142

Chapter 2 Summary Program

We can now write programs that use 1D arrays and apply the five steps of problem solving.

For example, the following program calculates an approximate value for the integral:



sin2(x) cos2(x)dx
0

 / 4



by using the rectangle method.

% IntegrateWithRectangleMethod.m calculates an approximate

% value for the integral of sin(x)^2 - cos(x)^2,

% between the limits 0 and pi/4.

% The rectangle method is used,

% ie A = h(y_1 + y_2 + ... + y_(n-1))

% Author: Peter Bier

% get number of points to use to represent the function over

% the specified range

n = input('Please enter the number of points to use: ');

% set up a range of x values from 0 through to pi/4

x = linspace(0,pi/4,n);

% calculate the value of the function for each x value

y = sin(x).^2 - cos(x).^2;

% determine the width of the rectangles we will use to

% approximate the area

h = x(2) - x(1);

% calculate area of all the little rectangles

% notice we drop the last y value by using array slicing

rectangles = h * y(1:n-1);

% sum all the little rectangles to get our area approximation

area = sum(rectangles);

% display the area value

disp('The approximate value of the definite integral is');

disp(area);

29

Some examples of this program running are given below (user input is in bold):

>> IntegrateWithRectangleMethod

Please enter the number of points to use: 10

The approximate value of the definite integral is

-0.54236

>> IntegrateWithRectangleMethod

Please enter the number of points to use: 1000

The approximate value of the definite integral is

-0.50039

It can be shown analytically that the solution is -0.5, so our approximation is pretty good.

30

Chapter 3: Functions, Problem Solving and

Debugging

MATLAB has many built-in functions, such as the trigonometric functions and the functions for

processing arrays that we have already met. The MATLAB command reference appendix lists more

of the built-in functions available.

In addition we can define our own functions in a function file and use them in just the same way as the

built-in functions. Writing functions is a key part of software development and will allow you to write

code that is shorter, easier to understand and easier to maintain.

Learning outcomes

After working through this chapter, you should be able to:

 Explain the concept of a function

 Call functions from your own programs

 Define your own functions

 Examine the function and command workspaces

 Debug script files and functions

What is a function?

A function is one of the basic building blocks of software development. Generally a function takes

some input value(s), processes them and returns some output value(s).

We are already familiar with mathematical functions, which take an input value and transform it into

an output value. You will have encountered the following notation for mathematical functions:



y  f (x)

The function f takes an input value x and returns an output value y. We will also refer to the input

value as the argument of the function f.

As we have already seen, MATLAB functions use the same notation when called.

Mathematical functions:



y  sin(x)

y  ln(x)

y  x

MATLAB functions:

y = sin(x)

y = log(x)

y = sqrt(x)

31

Here are a few more examples of some functions you have already encountered:

largestValue = max(x)

y = exp(x)

a = linspace(-pi, pi, 10)

Note that the linspace function takes not one but three input arguments. It is possible for a

function to have many input arguments. Depending on the function the input argument(s) may be

scalars or arrays. It is also possible for a function to have no input arguments, eg the following

function can be called to return a random number between 0 and 1:

x = rand()

Why use functions?

There are several excellent reasons for using functions.

Functions enable us to use a “divide and conquer” strategy. A complex programming task can be

broken into smaller manageable tasks, with a function written for each task. The functions do not

even need to be written by the same person, allowing several people to work on the same project at the

same time.

Functions allow us to reuse code. The same function may be useful for many problems

Rather than repeating the same lines of code several times in order to do a common task, we can write

a function to do that task and then simply call it. This not only saves us from writing lots of extra

code, it enables us to write easier to understand programs.

Functions make code easier to maintain. A function has well defined behaviour. We know that

given certain inputs it should return certain outputs. It is easy to check that the right outputs are being

returned for possible inputs. If there is a problem with our code we can test each function to help us

pinpoint the piece of problem code.

Functions allow us to hide implementation. Once a function has been written we don't need to look

at its code to use it. The only interaction is via inputs and outputs. How the function is written (the

implementation) is hidden inside the function.

Behaviour of a function

 Functions should be well commented (users must be able to find out how a function works)

 Functions should be well defined (given inputs should give known outputs)

 Functions should be well tested (inputs should always give correct outputs)

32

Calling functions

We can call functions from the command line or a script file. In either case they are called in the same

way. To call a function we need to know the name of the function, what input(s) it takes and what

output(s) it returns. Inputs can be either numbers or variables. Eg:

 y = sin(3);

 x = 3;

 y = sin(x);

y = min([3, 5, 1])

a = [3, 5, 1]

y = min(a)

For built-in functions the information we need to call the function can be found using the MATLAB

help. This is very handy when we meet a new function and need to learn how to use it for the first

time.

Let's look at the meshgrid function we will be using later in the course:

33

After reading through the help we now have some idea of how the meshgrid function works. We

could call the meshgrid function to set up some arrays for 3D plotting. We know it takes two inputs

and returns two outputs. Here is an example of a call to meshgrid:

xRange = -2:.2:2

yRange = -2:.2:2

[X,Y] = meshgrid(xRange,yRange)

Note that the name of the function is in lower case even though the help shows it written in uppercase.

Function names are case sensitive, which means that meshgrid(x,y), meshGrid(x,y) and

MESHGRID(x,y) would be interpreted as three different functions.

Input argument(s) are passed to the function by placing them inside the parentheses following the

function name. If there is more than one argument we separate them by commas. Note that there is

no space between the function name and the opening parentheses. Also note that the order of the input

arguments is very important. When calling a function with several inputs it is the order of the

arguments that is used to tell which is which, rather than the name. The input arguments do NOT need

to have the same name as those shown in the help file.

We usually assign the output of a function to a variable so that it can be used. Some functions return

more than one output value. If more than one variable is returned we assign the output variables by

using a list of variables inside square brackets. The output arguments do NOT need to have the same

name as those shown in the help file.

If there is only one output we can omit the square brackets:

 y = atan(x)

 a = atan(0.5)

IMPORTANT: If a function returns several outputs but you forget the square brackets and only

assign the result to one variable, it will contain only the first output returned. The other outputs will

be thrown away. This is a common programming error that beginner programmers make.

Some functions print information to the screen or draw images on the screen rather than returning a

value. In this case there is no need to store the output of the function as a variable:

 plot(x,y)

34

Writing functions

Let’s start by writing a very simple function that will square a number for us.

The mathematical definition of this function looks like this:

2)(xxy 

To define this function in Matlab you could type the following into a file:

function y = square(x)

 y = x^2;

return;

The keyword “function” lets Matlab know we are writing a function. Next is the output variable,

which must be assigned a value before the function returns. Following the equals sign is the function

name, which is case sensitive. Following the name is the function input, in brackets.

The function “body” contains a single line that is used to calculate the output value for our given

input. Finally the keyword “return” tells Matlab the function is finished.

Once this file was saved with the name square.m we can call our function, just as we would call any

other Matlab functions:

>> fourSquared = square(4)

Let’s have a look at a slightly more complicated example:

35

The polar_to_cartesian function is an example of most general case of a function, as it takes multiple

input arguments and produces multiple outputs. It is possible for a function to have multiple inputs,

one input or no inputs. It is also possible for a function to have multiple outputs, one output or no

outputs.

The first line of your file varies in each case.

Multiple outputs

 No inputs function [o1, o2, ...] = myfunc()

 One input function [o1, o2, ...] = myfunc(i1)

 Multiple inputs function [o1, o2, ...] = myfunc(i1, i2,...)

One output

 No inputs function [o1] = myfunc()

 One input function [o1] = myfunc(i1)

 Multiple inputs function [o1] = myfunc(i1, i2, ...)

For a function with one output value the square brackets around the output argument are optional and

may be left off if you desire, as was done with our square function.

No outputs

 No inputs function [] = myfunc()

 One input function [] = myfunc(i1)

 Multiple inputs function [] = myfunc(i1, i2, ...)

For a function with no output value the square brackets and equals sign are optional and may be left

off if you desire (you need to leave off BOTH if you wish to do this).

Function filenames

Functions must be saved to a file with a .m extension, using exactly the same filename as the function

name. As with standard script files there are some important limitations when naming functions.

Function names should NOT:

 include spaces

 start with a number

 use the same name as an existing command

You may only use alphanumeric characters and the underscore when naming functions. One

convention is to use underscores to separate words in a function name, eg polar_to_cartesian

Another popular convention to follow when naming functions is to use an upper case letter for the first

letter of the name and for the first letter of subsequent words, eg PolarToCartesian

These conventions helps to distinguish function names from variable names. It also helps distinguish

from built-in functions which are named using lower case letters only.

You may use whichever convention you prefer. In general this course manual will follow the latter

convention of using an upper case letter for the first letter of the name and for the first letter of

36

subsequent word. We’ll use the other convention occasionally too, so that you remember it. In

practice it makes for easier to read code if you stick to one of the conventions.

Function headers

Every function file should have a header comment at the top of the file, just beneath the function

definition. This header should describe the function's input(s) and output(s), the purpose of the

function and who wrote it.

function [f] = ConvertToFahrenheit(c)

% ConvertToFahrenheit(c) takes a temperature value c

% measured in degrees celsius and returns the equivalent

% value in Fahrenheit

% Author: Peter Bier

f = 9/5 * c + 32;

return

Typing help and your function name will display your header comments. Eg

>> help ConvertToFahrenheit

ConvertToFahrenheit(c) takes a temperature value c

measured in degrees celsius and returns the equivalent

value in Fahrenheit

Author: Peter Bier

37

Writing functions: Polar to cartesian example

Let’s revisit the polar_to_cartesian function, only this time we will develop it from scratch and include

a detailed function header and comments.

Recall that polar coordinates are useful for describing circular shapes.We need to convert to Cartesian

coordinates for plotting.

Pseudocode

INPUTS: r and θ

Calculate x value

Calculate y value

OUTPUTS: x and y

Code

function [x, y] = PolarToCartesian(r, theta)

% PolarToCartesian transforms r and theta from polar

% coordinates into (x,y) cartesian coordinates

% Inputs: r = radial distance

% theta = radial angle

% Outputs: x = cartesian x coordinate

% Y = cartesian y coordinate

% Author: Peter Bier

% we use the dot operator so that our code will also work

% if r and theta are arrays.

% Note the use of the semi-colon to suppress output,

% otherwise our function will print out the x and y values

% when calculating them

x = r .* cos(theta);

y = r .* sin(theta);

return

Remember that the function must be saved using the function name as the filename, eg

PolarToCartesian.m

sinry 

38

Using our function

% spiral.m draws a spiral using polar coordinates.

% Author: Peter Bier

% our array of 20 radius values will range from 0 to 10

spiralRs = linspace(0,10,20);

% our array of 20 theta values will range from 0 to 2pi,

% ie a full circle

spiralThetas = linspace(0, 2*pi, 20);

[x, y] = PolarToCartesian(spiralRs, spiralThetas);

plot(x,y);

Saving this code as spiral.m and running it produces the following

plot:

39

Workspaces

The MATLAB workspace

When you create variables in MATLAB via the command window or in script files, MATLAB stores

them in the “workspace”. You can view the contents of the workspace under the Workspace tab.

The MATLAB workspace can be cleared by either restarting MATLAB or by using the clear

command.

40

Function workspaces

Functions create their own workspaces

Function inputs are also created in the workspace when a function starts. A function doesn’t know

about any variables in any other workspace, it only has access to the input values and any variables it

creates.

Function outputs are copied from workspace when function ends. The MATLAB workspace knows

nothing about any of the other variables a function might use in its own workspace. Function

workspaces are destroyed after functions end. This means that any variables created in a function

“disappear” when the function ends.

Debugging

Often when we write a computer program it is "buggy". The program runs but it does not do what it is

supposed to. The problem may be as simple as an incorrect sign in a formula or it may be quite subtle

and hard to detect.

MATLAB provides a debugger to allow us to step through each line of code and examine the value of

the workspace variables as we go. By checking whether each line does what we expect it is usually

possible to track down the problem line (or lines).

A debugger can be a great help when working on a large file. We can set a "break-point" on a

particular line which means the program will run as normal until it reaches the break point. We can

then step through line by line until we have found the problem. Using a break point is a much better

idea than having to step through every single line, as often we know the problem occurs after a lot of

other code (which we don't want to spend time stepping through).

Debugging and functions

When stepping through each line of a piece of code in a file you have a choice of what to do when you

come to a line which calls a function. You can step "over" the function, in which case the debugger

just goes on to the next line of code in your current file. You can also step "into" the function, in

which case the debugger goes to the first line of code inside your function (which will open up a

different file).

Once inside a function you can choose to step through every single line or at some point you may like

to "step out", back to your original file you were debugging.

41

Chapter 3 Summary Program

We can now define functions and write programs that use those functions

For example, the following function uses numerical differentiaion to calculate the derivatives for a set

of points that are passed in as inputs.

function [dfdx] = NumericalDerivative(x,fx)

% NumericalDerivative uses numerical differentiation to find

% the derivative at each point for a set of discrete points

% passed to it that represent a mathematical function.

% Inputs: x A 1D array of x values

% fx A 1D array of values corresponding to a

% mathematical function f applied to each of

% the x values, ie f(x)

% Outputs: dfdx A 1D array of derivative values, 1 for each

% of the x values

% Author: Peter Bier

% find the number of elements in the array

n = length(x);

% determine the step size;

h = x(2) - x(1);

% use a forward difference to calculate the derivative of the

% first element. We cannot use a central difference or

% backward difference since there is no point to the left of

% the first element

dfdx(1) = (fx(2) - fx(1))/h;

% use a central difference to calculate the derivatives of the

% middle elements since we have points to the left and right

% and a central difference is more accurate

% Note we could do the second element by itself as follows:

% dfdx(2) = (fx(3) - fx(1))/(2*h)

% and the second to last element could be done as follows:

% dfdx(n-1) = (fx(n) - fx(n-2))/(2*h)

% Using array slicing we can be a little cunning and do all the

% middle elements at once by subtracting an array of

% all bar the last two elements from an array of

% all bar the first two elements and then dividing by 2h.

dfdx(2:n-1) = (fx(3:n) - fx(1:n-2)) / (2*h);

% use a backward difference to calculate the derivative of the

% last element. We cannot use a central difference or

% forward difference since there is no point to the right of

% the last element

dfdx(n) = (fx(n) - fx(n-1))/h;

42

return

Below is a script file that uses this function to create a plot of the derivative of y=sin(x).

% plot the derivative of the sin function

x = linspace(0, 2*pi, 50);

y = sin(x);

dydx = NumericalDerivative(x,y);

plot(x,dydx);

title('Plot of numerical derivative of sin function');

xlabel('x');

ylabel('derivative');

The result of running this script is a graph of the cos function.

43

Chapter 4: Logical operators and conditional

statements

Part of the power of computer programming comes from the ability to test if certain conditions are met

and then perform different actions depending on the result. Relational and logical operators allow us

to test relationships between variables and determine if expressions are true or false. Conditional

statements then allow us to control what code gets executed, based on whether a condition is true or

not.

Learning outcomes

After this chapter, you should be able to:

 Use pseudocode and flow charts to describe programs

 Understand relational and logical operators

 Understand conditional statements

 Create and use boolean variables

 Control program flow with conditional statements and boolean variables

Controlling your computer

A computer program is a sequence of simple steps. Each step does one thing.

Pseudocode and Flowcharts

Before writing a program in any computer language it is often a very good idea to write out a plan,

which will outline the steps in the program. This allows us to focus on what the program will do,

without worrying about exactly how to write the code. Armed with a plan it is then much quicker to

write the code. There are two common methods used for describing a program: pseudocode and

flowcharts.

Pseudocode is a text description of program steps. It may contain fragments of code but doesn’t

contain the nitty-gritty details. It is similar to a recipe.

44

Flowcharts use geometric symbols to describe program steps. The resulting chart captures the “flow”

of the program

Being able to plan programs by writing psuedocode or drawing flowcharts is a very handy skill no

matter what programming language you are working with.

Flowchart Elements

The following table details some of the geometric elements used in flow charts. Notice how different

shapes are used for different kinds of behaviour.

Beginning of
algorithm
(or function)

Computation

End of
algorithm
(or function)

Output

Input

Comparison

45

Here is an example of a flowchart from a popular web comic called xkcd.

Note that the comic artist wouldn’t get full marks in an exam for their flowchart, as they forgot to use

the correct shape for their start and stop points! For more xkcd comics see xkcd.com

46

Flow charting functions

Below is the flow chart for the polar_to_cartesian function:

Note that we use a parallogram to show the
inputs and outputs for the function.

47

Programming Example

We can plan out a program that will calculate your final percentage given your coursework and exam

percentages.

Pseudocode

1.Get coursework percentage C
2.Get exam percentage E
3.Calculate C + 10
4.Calculate E + 10
5.Calculate (C + E) / 2
6.Set final percentage F to be minimum of
 C + 10, E + 10, (C + E) / 2

Flowchart

Once we have our plan we can then choose a language to write our program in.

48

MATLAB program

49

C program

50

Implementing Min

What if min was not an in-built function? We could write our own to perform the same task, which

would need both comparisons and logic

Pseudocode

1.F = Cinc

2.If Einc < F, set F = Einc

3.If Avg < F, set F = Avg

Flowchart

Before we can write our own min function we will need a way of comparing relationships between

values and a way of determining which commands to run based on that comparison.

Relational operators

Relational operators test relationships between variables.

A == B tests whether A equals B

A ~= B tests whether A does not equal B

A < B tests whether A is less than B

A > B tests whether A is greater than B

A <= B tests whether A is less than or equal to B

A >= B tests whether A is greater than or equal to B

Using relational operators

>> a=3;

>> b=4;

>> a==b

ans =

 0

>> a~=b

ans =

 1

>> a<b

ans =

 1

>> a>b

ans =

 0

>> a<=b

ans =

 1

>> a>=b

ans =

 0

51

Logical Operators

Logical operators test conditions, usually expressed as relationships between variables or expressions.

A value is false if it is 0 and true otherwise. The value of a logical operator is either true or false,

represented as 1 or 0 respectively.

Common logical operators are:

 ~p true if p is not true

p & q true if both p and q are true

p | q true if either p or q are true

Using Logical Operators

>> a=3;
>> b=4;
>> ~(a==b)
ans =
 1
>> a | b
ans =
 1

>> c=5;
>> (a<b) & (b<c)
ans =
 1
>> (a>b) | (a>c)
ans =
 0
>> (a>b) | (b<c)
ans =
 1

Conditional statements

A conditional statement has two parts to it, a condition and a dependent:

“If it is sunny outside then I will cycle to university.”

 condition dependent

•“If I get more than 90% in the final exam then I will buy myself an iPhone .”

 condition dependent

Using MATLAB

if examMark > 90 then disp('Time to buy an iPhone') end

 condition dependent

52

if...end

Syntax

if condition

 some commands

end

dependent

The word end lets MATLAB know when the conditional statement is finished. It is usual to use the

indentation shown above. This makes it simple to spot where the end of the if occurs.

Pseudocode

1.If condition, some commands

Alternative Pseudocode

1. If condition

a) Some commands

Flowchart

Example

File: myIf.m
a=2;

b=5;

if a<b

 disp(a)

end

MATLAB command prompt
>> myIf

 2

>>

53

Describing myIf.m

Pseudocode

1.Set a = 2
2.Set b = 5
3.If a < b
a)Display a

Flowchart

54

if...else...end

Syntax

if condition

 some commands

else

 some other commands

end

This section is

OPTIONAL

Remember that the word end lets MATLAB know when the conditional statement is finished. It is

important not to forget it!

Pseudocode

1. If condition

 a) Some commands

2. Else

 a) Some other commands

Flowchart

Example

File: myIfElse.m
a=5;

b=4;

if a<b

 disp(a)

else

 disp(b)

end

MATLAB command prompt
>> myIfElse

 4

>>

55

Describing myIfElse.m

Pseudocode

1.Set a = 5
2.Set b = 4
3.If a < b
a)Display a
4.Else
a)Display b

Flowchart

56

if...elseif...else...end

Syntax

if condition

 some commands

elseif another condition

 some different commands

else

 some other commands

end

This section is

OPTIONAL

Pseudocode

1. If condition

 a) Some commands

2. Else If another condition

 a) Some different commands

3. Else

 a) some other commands

Example

File: myIfElseIfElse.m
a=5;

b=4;

if a==b,

 disp(a)

 disp(b)

elseif a<b,

 disp(a)

else

 disp(b)

end

MATLAB command prompt
>> myIfElseIfElse

 4

>>

57

Describing myIfElseIfElse.m

Pseudocode

1.Set a = 5
2.Set b = 4
3.If a == b
a)Display a and b
4.Else if a < b
a)Display a
5.Else
a)Display b

Flowchart

Testing multiple conditions

Suppose we want to check if a < b < c and then do something depending on the result.

You might be tempted to try

a = 2

b = 1

c = 3

if (a < b < c)

 disp('b is between a and c')

end

This is NOT the correct way to test if b is between a and c.

58

MATLAB's precedence means that it will first evaluate a < b, which is false and so is given the

value 0. It will then check to see if 0 < c, which is true, so the entire expression evaluates to true.

Hence running the above code will display the message 'b is between a and c' even though

that is clearly not the case.

To test if b is between a and c we need to test two relationships:

a < b and b < c

We should test whether both are true:

if (a<b) & (b<c)

 disp(‘b is between a and c’)

end

Note the use of “&” to test whether both conditions are true.

More on precedence

Care must be taken when checking multiple conditions, as it is easy to write code which does not do

what you expect. This is because certain operations take precedence over others.

Suppose we want to check if a is less than b and c. This statement is ambiguous and can be

interpreted in a few different ways.

For example it could be interpreted to mean:

test that the value of a is less than b AND that
the value of a is less than c

(a < b) & (a < c)

find the value of b & c and test to see if a is less
than this

a < (b & c)

find the value of a<b and see if both this value
and c are true

(a < b) & c

Notice that the only difference between the MATLAB code for the second and third options is the

placement of the brackets.

What happens if we leave off the brackets? Which interpretation does MATLAB use?

a=2

b=3

c=1

if (a < b & c)

 disp('a is less than b and c')

end

MATLAB's precedence is that < will be evaluated before &. First 2<3 is evaluated which is true.

Then 1 & 1 is evaluated, which is also true, so the message is displayed.

59

Omitting the brackets had the same effect as using (a<b) & c

When testing multiple conditions it is a good idea to always put in brackets, even if you don't think

you need them. Brackets make your code easier to read and understand. They also help to avoid bugs

which can result from using the default evaluation order of logical and relational operators, when it

checks something different from what you actually wanted.

For more detail on operator precedence see the Matlab help (Search for “operator precedence”).

Implementing Min Again

We now have the tools to be able to write our own min function.

% myMin - finds min(Cinc, Einc, Avg)

% If Cinc < Einc and Avg, set F = Cinc

if (Cinc < Einc) & (Cinc < Avg),

 F = Cinc;

% If Einc < Cinc and Avg, set F = Einc

elseif (Einc < Cinc) & (Einc < Avg),

 F = Einc;

% If Avg < Cinc and Einc, set F = Avg

else % Must be true by default

 F = Avg;

end;

Boolean variables

Boolean variables are used to store “true” and “false” values. They are very useful when working

with relational operators and conditional statements.

MATLAB uses:

 a value of 1 to represent true (actually any NONZERO value is treated as true)

 a value of 0 to represent false

MATLAB also has two special variables that are useful when dealing with booleans

 true which has the value 1

 false which has the value 0

60

You can create boolean variables just like other variables:

% set isSuccessful to true and finished to false

isSuccessful = 1;

finished = 0;

Or equivalently:

isSuccessful = true;

finished = false;

It is common to use boolean variables to store an answer to some “question” that controls a

conditional statement or while loop.

if (isSuccessful)

 disp('Time to celebrate!');

end

Naming boolean variables

It is good programming practice to choose a variable name that indicates the type of the variable. One

common naming convention for boolean variables is to start every name with the word "is". This

makes it clear how to interpret a value of true or false. For example the name isSuccessful is much

more meaningful than a variable called status.

Try to write statements that read well. Consider which of the following reads better:

if isSuccessful

 do something

end

if ~isFailure

 do something

end

If you do not want to use names which start with "is" then it is a good idea to use a yes/no or true/false

question as the name. This helps you write readable code. eg:

if(atUniversity & stillAStudent)

 needMoreMoney = 1;

end

61

Chapter 4 Summary Program

% This program requests information on a passenger's luggage

% and determines if their luggage is acceptable for air travel

% Maximum Dimensions of Carry-on Luggage: 115 linear cm

% (length + width + height)

% Maximum weight of carry-on luggage is 7 kg

% Maximum weight of checked luggage is 20kg

% get passenger luggage information

carryonLength = input('Enter carry on length:');

carryonWidth = input('Enter carry on width:');

carryonHeight = input('Enter carry on height:');

carryonWeight = input('Enter carry on weight:');

checkedWeight = input('Enter checked bag weight:');

linearDimensions = carryonLength + carryonWidth +

carryonHeight;

luggageIsAcceptable = 1;

% determine if carry on is acceptable

if(linearDimensions <= 115 & carryonWeight <= 7)

 disp('Carry on bag acceptable')

else

 % carry on not acceptable

 luggageIsAcceptable = 0;

 % display reason(s) why carry on not accepted

 if (linearDimensions > 115)

 disp('Carry on too big');

 end

 if(carryonWeight > 7)

 disp('Carry on too heavy');

 end

end

% determine if checked bag is acceptable

if (checkedWeight <= 20)

 disp('Checked bag acceptable')

else

 disp('Checked bag too heavy');

 luggageIsAcceptable = 0;

end

if(luggageIsAcceptable)

 disp('You may now board your flight');

end

62

Some examples of this program running are given below (user input is in bold):

Enter carry on length: 30

Enter carry on width: 40

Enter carry on height: 50

Enter carry on weight: 4

Enter checked bag weight: 21

Carry on too big

Checked bag too heavy

Enter carry on length: 30

Enter carry on width: 40

Enter carry on height: 20

Enter carry on weight: 8

Enter checked bag weight: 19

Carry on too heavy

Checked bag acceptable

Enter carry on length: 30

Enter carry on width: 40

Enter carry on height: 20

Enter carry on weight: 5

Enter checked bag weight: 19

Carry on acceptable

Checked bag acceptable

You may now board your flight

63

Chapter 5: Loops

Often when writing computer programs we will want to run the same (or very similar) piece of code

several times. MATLAB provides commands that allow us to “loop” over a piece of code and run it

multiple times.

We may know how many times you want to loop over a section of code, in which case we use a for

loop.

We may need to keep looping until some condition is met, in which case we use a while loop.

Remember, if you find yourself writing the same lines of code more than a couple of times in a row,

chances are you should be using a loop. Using loops will save you some typing and also make your

program easier to read and maintain.

Learning outcomes

After working through this chapter, you should be able to:

 Explain the concept of a while loop

 Use while loops in a program

 Explain the concept of a for loop

 Use for loops in programs

 Manipulate 1D arrays using a for loop

 Describe loops using flowcharts and pseudocode

While loops

While loops are used when you need to keep looping while some condition remains true. They are

very similar to if statements. An if statement checks the truth of a conditon and then executes a piece

of code if the condition is true. A while statement checks the truth of a condition and while the

condition remains true repeatedly loops over a piece of code, executing it again and again.

Suppose you wanted to write out the square of an integer, only if the value squared was less than 50.

It would be easy to come up with an if statement to do this:

i = input(‘Enter an integer’);

if i^2 <= 50

 disp(i^2)

end

64

Suppose that we now wanted to write out the squares of all integers less than 50.

One way to do this would be as follows:

File: squares.m
disp(1^2);

disp(2^2);

disp(3^2);

disp(4^2);

disp(5^2);

disp(6^2);

disp(7^2);

MATLAB command prompt
>> squares

 1

 4

 9

 16

 25

 36

 49

>>

It is pretty inefficient to type out seven nearly identical lines. The situation would be even worse if we

had wanted to write out all the squares less than 1,000,000.

Notice how each line is almost identical, with only one number changing each time. In fact we can

even make each display command call the same, by using a variable to hold the number we are

squaring:

File: squares2.m
i= 1

disp(i^2)

i= 2

disp(i^2)

i =3

disp(i^2)

i =4

disp(i^2)

i = 5

disp(i^2)

i = 6

disp(i^2)

i = 7;

disp(i^2)

MATLAB command prompt
>> squares2

 1

 4

 9

 16

 25

 36

 49

>>

Unfortunately this has made our code even longer!

Fortunately MATLAB provides us a way of "looping" over the command disp(i^2) and executing it

while i^2 < 50

We can represent what we want to do using pseudocode or a flowchart

65

Pseudocode

i = 1

while i
2
 <= 50

 display i
2

i = i + 1

end

Flowchart

To achieve this sort of behaviour we use a while loop.

MATLAB while loop example

File: squares3.m
i = 1;

while i^2 <= 50

 disp(i^2)

 i = i + 1;

end

MATLAB command prompt
>> squares3

 1

 4

 9

 16

 25

 36

 49

IMPORTANT: Note that for the while loop to work, we need to make sure the variable i increases by

one each time, as otherwise the value of i will stay the same and consequently the value of i
2

 will

never change.

To make sure that the value of i changes, the following line is executed each time we go through the e

loop

i = i + 1

Note how this has the effect of increasing the value of i by one. Think about what would happen if we

left out this line.

display i2

66

General form of a while loop

Pseudocode

initialise

while condition

 some commands

 update

end

Flowchart

The update step is very important. If it is omitted or not done correctly you may get stuck in an

infinite loop.

Infinite loops

An “Infinite loop” is a piece of code that will execute again and again and again ... without ever

ending.

Possible reasons for infinite loops:

 getting the conditional statement wrong

 forgetting the update step

'

If you are in an infinite loop then ctrl-c stops MATLAB executing your program

File: infinite_loop.m
i = 1;

while i >= 0

 disp(i)

 i = i + 1;

end

MATLAB command prompt
>> infinite_loop

 1

 2

 3

 4

 LOTS MORE NUMBERS
 6824

 6825

 AND SO ON, until ctrl-C

67

REMEMBER: use CTRL-C to break out of an infinite loop.

Booleans and while loops

Using a boolean variable to control a while loop allows us to write more readable code.

Syntax

stillLooping = true;

while stillLooping

 some commands

 if some conditions

 stillLooping = false;

 end

end

Boolean while Example

iPhoneCost = 979;

needMoreMoney = 1;

while(needMoreMoney)

 moneySaved = input('How much money have you saved?');

 if(moneySaved >= iPhoneCost)

 disp('You do not need to save any more money');

 needMoreMoney = 0;

 else

 disp('Keep saving');

 end

end

68

For loops

Recall that when we wanted to write out the squares of all integers less than 50, we used a while loop

i = 1;

while i^2 <= 50

 disp(i^2)

 i = i + 1;

end

We could just as easily used the following while loop to achieve the same task

i = 1;

while i <= 7

 disp(i^2)

 i = i + 1;

end

Here the condition has been changed, so that we are checking if the variable i is less than 7. This loop

will be run exactly seven times, with the body of the loop being run for each of the numbers 1, 2, 3, 4,

5, 6 and 7.

MATLAB provides another way of "looping" over the commands called a for loop. For loops can be

more convenient to use than while loops in many cases (although you can always achieve the same

thing with an appropriate while loop). The convenience of a for loop lies in the fact that they take care

of the update step for us.

For loops are particularly useful when we know exactly how many times we want to loop through a

piece of code or we wish to execute a loop a number of times for a given list of values. In the

example above example we wish to display the square of i for each of the values from 1 to 7.

The syntax of the appropriate for loop looks like this:

File: squares4.m
for i=1:7

 disp(i^2)

end

MATLAB command prompt
>> squares4

 1

 4

 9

 16

 25

 36

 49

>>

The for loop allows us to execute the disp command for each of the values from 1 to 7.

The first time through the loop, i has the value 2. The second time i has the value 3 and so on, until

the very last time when i has the value 7. Recall that 1:7 is another way of writing the array

[1,2,3,4,5,6,7]. We can think of a for loop as a loop that executes a given piece of code for each

element in an array.

69

Pseudocode for our squares example

for i = 1 to 7 by 1

 display i
2

end

If we wanted to print out all the squares from 1 to 100, instead of 1 to 7, just a small change is

necessary:

for i = 1:100

 disp(i^2)

end

Flowchart for our squared example

Notice this flowchart is very similar to the one for the while loop that did the equivalent task. This

shouldn’t be a surprise as the task can be accomplished using either kind of loop.

More on for loops

At the heart of a for loop is a loop variable, often given the name i.

The first time through the loop the variable i has a start value.

Each subsequent time the value of i is increased by a step value (usually 1).

We continue looping until we reach the finish value.

The commands inside the for loop will often use the loop variable (but they don't have to).

Pseudocode

for i = start to finish by step

 some commands

end

display i2

70

Flowchart

Syntax

for variable = start:step:finish

 some commands

end

If no step is specified it is assumed to be 1.

Some examples

File: count_to_five.m
for i=1:5

 disp(i)

end

MATLAB command prompt
>> count_to_five

 1

 2

 3

 4

 5

>>

File: triple_greeting.m
for i=1:3

 disp('Hello')

end

MATLAB command prompt
>> triple_greeting

 Hello

 Hello

 Hello

>>

71

Different step values

File: count_time.m
for time=0:0.1:0.5

 disp(time)

end

MATLAB command prompt
>> count_time

 0

 0.1000

 0.2000

 0.3000

 0.4000

 0.5000

File: countdown.m
for i=5:-1:1

 disp(i)

end

disp('blastoff!')

MATLAB command prompt
>> countdown

 5

 4

 3

 2

 1

 blastoff!

>>

Note that the for loop stops as soon as the finish value is exceeded.

File: count_odd.m
for i=1:2:10

 disp(i)

end

MATLAB command prompt
>> count_odd

 1

 3

 5

 7

 9

>>

72

For Loops and arrays

For loops are ideal for processing arrays. The loop variable can be used as an array index. This

allows us to use the same piece of code but run it on each element in an array in turn.

File: check_weights.m

bagWeights = [4.5, 3.4, 5.0, 7.2, 10.0, 4.9, 8.6]

for i=1:length(bagWeights)

 if (bagWeights(i) > 7)

 disp(['Bag ', num2str(i), ' too heavy!']);

 bagIsTooHeavy(i) = true;

 else

 bagIsTooHeavy(i) = false;

 end

end

MATLAB command prompt

>> check_weights

 Bag 4 too heavy!

 Bag 5 too heavy!

 Bag 7 too heavy!

>>

The array bagIsTooHeavy will also have been populated

>> bagIsTooHeavy

bagIsTooHeavy =

 0 0 0 1 1 0 1

Notice how the loop variable has been used as an index into our bagWeights and bagIsTooHeavy

arrays. A common programming error is to create a for loop attempts to access elements of an array

that do not exist. This will occur if i happens to be zero, have a negative value or have a fractional

value. Array indices in Matlab can only be positive integers.

73

 Chapter 5 Summary Program

We can now write programs that use loops.

% this script file lets a user enter internal and examination

% marks for the students in a class and then calculates their

% final marks.

% index keeps track of which student we are up to

i = 0;

% boolean variable which is true while there are more students

% to process

moreStudentsToProcess = 1;

while(moreStudentsToProcess)

% increment student number

 i = i + 1;

% ask user to enter internal and exam marks for student

 id(i) = input('Enter student id number:');

 internalMark(i) = input('Enter the internal mark:');

 examMark(i) = input('Enter exam mark:');

 disp('Are there more students to process?')

 response = input('Enter 1 for yes, 0 for no:');

% response of 0 means no more students to process

 if(response == 0)

 moreStudentsToProcess = 0;

 end

end

% calculate final exam mark for each student

for j=1:length(id)

 coursework = internalMark(j);

 exam = examMark(j);

 cmax = coursework + 10;

 emax = exam + 10;

 avg = (coursework + exam)/2;

 finalMark(j) = min([cmax,emax,avg]);

end

disp('Student ids are');

disp(id);

disp('Final marks are');

disp(finalMark);

An example of this program running is shown below, with user input in bold.

74

Enter student id number:123

Enter the internal mark:12

Enter exam mark:56

Are there more students to process?

Enter 1 for yes, 0 for no:1

Enter student id number:234

Enter the internal mark:56

Enter exam mark:78

Are there more students to process?

Enter 1 for yes, 0 for no:1

Enter student id number:565

Enter the internal mark:67

Enter exam mark:69

Are there more students to process?

Enter 1 for yes, 0 for no:0

Student ids are

 123 234 565

Final marks are

 22 66 68

 75

Appendix: MATLAB Command Reference

There are many MATLAB features that are not included in the lecture and lab notes. Listed below are

some of the MATLAB functions and operators available, grouped by subject area. Use the on-line

help facility for more detailed information on the functions.

General Disk Files

 help help facility chdir change current directory

 demo run demonstrations delete delete file

 who list variables in memory diary diary of the session

 what list M-files on disk dir directory of files on disk

 size row and column dimensions load load variables from file

 length vector length save save variables to file

 clear clear workspace type list function or file

 computer type of computer what show M-files on disk

 ^C local abort fprintf write to a file

 exit exit MATLAB

 quit same as exit

Matrix/Array Operators

Matrix Operators Array Operators (Element wise)

--

 + addition + addition

 - subtraction - subtraction

 * multiplication .* multiplication

 / right division ./ right division

 \ left division .\ left division

 ^ power .^ power

 ' conjugate transpose .' transpose

Relational and Logical Operators Control Flow

 < less than if conditionally execute statements

 <= less than or equal elseif used with if

 > greater than else used with if

 >= greater than or equal end terminate if, for, while

 == equal for repeat statements a number of times

 ~= not equal while do while

 & and break break out of for and while loops

 | or return return from functions

 ~ not pause pause until key pressed

 76

Special Values Special Matrices

 ans answer when expression not assigned diag diagonal

 pi pi eye identity

 inf infinity magic magic square

 NaN Not-a-Number ones constant

 clock wall clock rand random elements

 date date zeros zero

Special Characters Trigonometric Functions

 = assignment statement sin sine

 [used to form vectors and matrices cos cosine

] see [tan tangent

 (arithmetic expression precedence asin arcsine

) see (acos arccosine

 . decimal point atan arctangent

 ... continue statement to next line atan2 four quadrant arctangent

 ,
separate subscripts and function
arguments sinh hyperbolic sine

 ; end rows, suppress printing cosh hyperbolic cosine

 % comments tanh hyperbolic tangent

 : subscripting, vector generation asinh hyperbolic arcsine

 ! execute operating system command acosh hyperbolic arccosine

 atanh hyperbolic arctangent

Programming and M-files Elementary Math Functions

 input get numbers from keyboard abs absolute value or complex magnitude

 keyboard call keyboard as M-file angle phase angle

 error display error message sqrt square root

 function define function real real part

 eval interpret text in variables imag Imaginary part

 feval evaluate function given by string conj complex conjugate

 echo enable command echoing round round to nearest integer

 exist check if variables exist fix round toward zero

 etime elapsed time floor round toward -infinity

 global define global variables ceil round toward infinity

 startup startup M-file sign signum function

 getenv get environment string rem remainder

 menu select item from menu exp exponential base e

 log natural logarithm

 log10 log base 10

 77

Command Window Graph Annotation

 clc clear command screen title plot title

 format set output display format xlabel x-axis label

 disp display matrix or text ylabel y-axis label

 fprintf print formatted number grid draw grid lines

 hold hold plot on screen

Graph Paper Column-wise Data Analysis

 plot linear X-Y plot max maximum value

 loglog loglog X-Y plot min minimum value

 semilogx semi-log X-Y plot mean mean value

 semilogy semi-log X-Y plot median median value

 polar polar plot std standard deviation

 mesh 3-dimensional mesh surface sort sorting

 contour contour plot sum sum of elements

 meshgrid domain for mesh plots prod product of elements

 bar bar charts cumsum cumulative sum of elements

 stairs stairstep graph cumprod cumulative product of elements

 errorbar add error bars hist histograms

Decompositions and Factorisations Elementary Matrix Functions

 chol Cholesky factorization expm matrix exponential

 eig eigenvalues and eigenvectors logm matrix logarithm

 hess Hessenberg form sqrtm matrix square root

 inv inverse poly characteristic polynomial

 lu factors from Gaussian elimination det determinant

Nonlinear Equations and Optimisation Differential Equation Solution

 fmin
minimum of a function of one
variable ode23 2nd/3rd order Runge-Kutta method

 fmins
minimum of a multivariable function

 ode45

4th/5th order Runge-Kutta-Fehlberg
method

 fsolve
solution of a system of nonlinear
equations

 fzero zero of a function of one variable

 File formats (used with fscanf, fprintf etc)

%c characters

%d decimal numbers

%e, %f, %g floating-point numbers

%i signed integer

%o signed octal integer

%s series of non-white-space characters

%u signed decimal integer

%x signed hexadecimal intege

