
The Department of Engineering Science

The University of Auckland

Chapter 5

Loops

Learning Outcomes

• Explain what a for loop is

• Use for loops in programs

• Manipulate 1D arrays using a for loop

• Explain what a while loop is

• Use while loops in a program

• Describe loops using flowcharts and
pseudocode

Loops

• Often in your programs you will want to “loop”
– repeat some commands multiple times

• May know how many times you want to loop

– use a for loop

• May be looping until something happens

– conditional loop
– use a while loop

• If you find yourself typing similar lines more
than a couple of times, use a loop

For loops

• We want to write out the squares of all
integers from 2 to 7

• We will do this several ways in Matlab
and along the way will meet the for loop

Describing our for loop

• To write out the squares of the integers
from 2 to 7

for i = 2 to 7 by 1

 display i2

end

Pseudocode

YES

NO

is

i ≤ 7

?

i = i + 1 display i2

i = 2

Flowchart

Loop variables

• At the heart of a for loop, is the loop
variable (often give the name i)

• The first time through, i has a start value

• Each subsequent time it is increased by
the step size (usually 1)

• We continue looping until the finish
value is reached

• The body of the for loop will often use
the loop variable (but it doesn't have to)

General for Loops

Pseudocode

for i = start to finish by step

 some commands

end Flowchart

YES

NO

is

i <= finish

?

i = i + step
some

commands

i=start

Syntax

for variable = start:step:finish

 some commands
end

– If no step specified assumed to be 1

 File: for_loop.m

for i=1:5

 disp(i)

end

Matlab command prompt
>> for_loop

 1

 2

 3

 4

 5

>>

Some examples

for variable = start:step:finish

 some commands
end

– If no step specified assumed to be 1

 File: for_loop.m

for i=1:5

 disp(i)

end

Matlab command prompt
>> for_loop

 1

 2

 3

 4

 5

>>

for loop Example

File: squares.m

for i=1:3

 disp('Hi')

end
Matlab command prompt
>> for_loop_greeting

 Hi

 Hi

 Hi

>>

Different step values

File: more_for_loops.m

for time=0:0.1:0.5

 disp(time)

end

Matlab command prompt
>> more_for_loops

 0

 0.1000

 0.2000

 0.3000

 0.4000

 0.5000

>>

Different step values

File: countdown.m

for i=5:-1:1

 disp(i)

end

disp('blastoff!')

Matlab command prompt
>> countdown

 5

 4

 3

 2

 1

 blastoff!

>>

Don’t necessarily

get finish value

While loops

• Maybe you want to write out squares of
integers (starting at 1) until the square
exceeds 50

i = 1

while i2 <= 50

 display i2

 i = i + 1

end

Pseudocode

YES

NO

is

i2 ≤ 50

?

i = i + 1 display i2

i = 1

Flowchart

initialise

while condition

 some commands

 update

end

MATLAB while loop Example

Matlab command prompt
>> while_loop

 1

 4

 9

 16

 25

 36

 49

File: while_loop.m
i = 1;

while i^2 <= 50

 disp(i^2)

 i = i + 1;

end

While Loops

Pseudocode

initialise

while condition

 some commands Flowchart

 update

end

YES

NO

is

condition

?

update
some

commands

initialise

Infinite Loops

• “Infinite loop” = piece of code that
will execute again and again …
without ever ending

• Possible reasons for infinite loops:
– getting the conditional statement

wrong

– forgetting the update step

• If you are in an infinite loop then
ctrl-c stops MATLAB executing
your program

Infinite Loops

File: infinite_loop.m

i = 1;

while i >= 0

 disp(i)

 i = i + 1;

end

Matlab command prompt
>> infinite_loop

 1

 2

 3

 4

 …

 6824

 6825

>>

Infinite Loops

File: infinite_loop.m

i=1;

while i<=10

 disp(i)

end

Matlab command prompt
>> infinite_loop

 1

 1

 1

 1

 …

 1

 1

>>

Booleans and while loops

• Use a boolean to control while loop

stillLooping = true;

while stillLooping

 some commands

 if some conditions

 stillLooping = false;

 end

end

Recommended Reading

Chapter 5

Loops

Introduction to Matlab 7 for Engineers (2nd

ed)

A Concise Introduction to Matlab (1st ed)

Topic Section Pages Section Pages

Loops 1.6 48-51

For loops 4.5 211-213 4.4 170-174

While loops 4.5 221-225 4.4 178-180

The Department of Engineering Science

The University of Auckland

Chapter 6

2D and 3D Arrays

Learning outcomes

• Explain what a 2D array is

• Create and manipulate 2D arrays

• Draw plots of 2D arrays

• Perform calculations with 2D arrays

• Manipulate 2D arrays using for loops

• Manipulate images via 3D arrays

2D Arrays

• Variables so far have been scalars
(single value) and 1D arrays (lists of
values)

• Some types of data are suited to being
stored in 2D arrays

– data which corresponds to an underlying
physical “grid”

– data from a table

– data representing the elements of a matrix

2D Arrays versus 1D Arrays

• If a 1D array is like a filing cabinet, a 2D array
is like a set of cubby holes

>> A = [1, 2, 3;

 2, 4, 6;

 -1, 0, 1]

A =

 1 2 3

 2 4 6

 -1 0 1

A

A(1,1) = 1 A(1, 2) = 2 A(1, 3) = 3

A(2, 1) = 2 A(2, 2) = 4 A(2, 3) = 6

A(3, 1) = -1 A(3, 2) = 0 A(3, 3) = 1

Creating 2D arrays

• Create a table of values
– enclosing numbers within []

– separating columns by , or a space

– separating rows by ;

 >> QuarterlyProd = [42, 52, 48, 47;

 41, 48, 50, 42;

 51, 38, 40, 41]

QuarterlyProd =

 42 52 48 47

 41 48 50 42

 51 38 40 41

>>

>> QuarterlyProd = [42, 52, 48, 47;

 41, 48, 50, 42;

 51, 38, 40, 41]

QuarterlyProd =

 42 52 48 47

 41 48 50 42

 51 38 40 41

>> QuarterlyProd(2,3)

ans =

 50

>> QuarterlyProd(2,3) = 35

QuarterlyProd =

 42 52 48 47

 41 48 35 42

 51 38 40 41

Accessing Array Elements

• You can access 2D
array elements by
specifying the row
and column using
(,)

Extending Arrays

• You can add extra elements by
– creating them directly (,)

• MATLAB fills in the gaps with 0

>> QuarterlyProd = [42, 52, 48, 47;

 41, 48, 50, 42;

 51, 38, 40, 41]

QuarterlyProd =

 42 52 48 47

 41 48 50 42

 51 38 40 41

>> QuarterlyProd(4, 1) = 45

QuarterlyProd =

 42 52 48 47

 41 48 50 42

 51 38 40 41

 45 0 0 0

Extending Arrays

• You can concatenate elements to 2D
arrays

– Need to make sure dimensions of new
elements are correct

>> A = [8, 9; 1 2]

A =

 8 9

 1 2

>> B = [4 5]

B =

 4 5

>> C = [3; 5]

C =

 3

 5

>> D = [A; B]

D =

 8 9

 1 2

 4 5

>> E = [A, C]

E =

 8 9 3

 1 2 5

>> F = [A, C; B, 12]

F =

 8 9 3

 1 2 5

 4 5 12

2D Array Functions

• Standard mathematical functions can be
applied to 2D arrays too
>> x = [1, 2, 3; 4, 5, 6];

>> y = sin(x)

y =

 0.8415 0.9093 0.1411

 -0.7568 -0.9589 -0.2794

 sin(1) sin(2) sin(3)

 sin(4) sin(5) sin(6)

Special Array Functions

>> [m, n] = size(A)

– m = number of rows, n = number of

columns

• transpose operator '

– swaps the rows and

 columns in an array

>> A = [1 2 3;

 4 5 6];

>> B = A'

B =

 1 4

 2 5

 3 6

Automatic 2D Arrays

• Ways to create 2D arrays automatically

– meshgrid

 (more later)

>> eye(3)

ans =

 1 0 0

 0 1 0

 0 0 1

>> zeros(2, 4)

ans =

 0 0 0 0

 0 0 0 0

>> ones(3, 2)

ans =

 1 1

 1 1

 1 1

Drawing 2D Arrays

>> M = [3 4 5;

2 3 4;

1 2 3]

M =

 3 4 5

 2 3 4

 1 2 3

>> surf(M)

values in
array

row index column index

Adding Labels

>> M = [3 4 5;

2 3 4;

1 2 3]

M =

 3 4 5

 2 3 4

 1 2 3

>> surf(M)

>> xlabel('x axis')

>> ylabel('y axis')

>> zlabel('z axis')

>> title('2D Array')

2D Arrays as Surfaces

>> M = [3 4 5;

2 3 4;

1 2 3]

M =

 3 4 5

 2 3 4

 1 2 3

>> surf(M)

>> M = [3 4 5;

2 3 4;

1 2 3]

M =

 3 4 5

 2 3 4

 1 2 3

>> surf(M)

>> xlabel('x axis')

>> ylabel('y axis')

>> zlabel('z axis')

>> title('2D Array')

Matrices as Surfaces

ROWS become Y VALUES

COLUMNS become X VALUES

Arithmetic With 2D Arrays

• Two 2D arrays can be added or
subtracted using the + and - operators
… as long as arrays have same size
 Hint Use size command to find out how

big an array is or check in the workspace
window

Multiplication With 2D Arrays

• Two 2D arrays multiplied with * operator

– first array must have same number of
columns as second array has rows

– size(A, 1) gives number of rows of A

– size(A, 2) gives number of columns of A

C = A * B A

B

m x n

n x p

m x p

Multiplication With 2D Arrays























2
10

)14()42()21(

)10()41()23(

BAC

>> A = [3 1 0;

 1 -2 4];

>> B = [2;

 4;

 1];

>> C = A * B

C =

 10

 -2

>>

Multiplication With 2D Arrays

• In mathematically based work this kind
of array multiplication is very useful

• However in some applications we want
to perform an element-wise
multiplication
– Multiply each element in first array by

corresponding element in second array

– Two arrays must be same size

>> A = [3 1 0;

 1 -2 4];

>> B = [4 2 -1;

 0 1 3];

>> C = A .* B

C =

 12 2 0

 0 -2 12

Element-wise Multiplication

• To perform multiplication element-wise
use a . before operator





























1220

0212

)34()12()01(

)10()21()43(

BAC *.

Dot Operator

• Dot operator can also be applied with
other mathematical operations
– .^ 2 squares elements in array term by

term instead of multiplying whole array by
itself

– ./ divides array element by element

>> denom = [2, 3, 4, 5, 6];

>> numer = [1, 2, 3, 4, 5];

>> fracs = numer ./ denom

fracs =

 0.5000 0.6667 0.7500 0.8000 0.8333

2

1

3

2

4

3

5

4

6

5

Subranges

• Can select any submatrix using 1D
arrays of indices

 >> A = [1 4 5 6; 8 3 2 8; 0 6 7 9];

>> B = A(2:3, 2:4)

B =

 3 2 8

 6 7 9

>> C = A([2 1], [1 3 4])

C =

 8 2 8

 1 5 6
















9760
8238
6541

A
















9760
8238
6541

A

Colon Operator

• Using a colon : instead of an index array

refers to ALL rows or columns of the
array

 >> A = [1 4 5 6;

 8 3 2 8;

 0 6 7 9];

>> B = A(2, :)

B =

 8 3 2 8

>> C = A(:, 2)

C =

 4

 3

 6

>> D = A(1:2, :)

D =

 1 4 5 6

 8 3 2 8

Nested Loops

for i = i_start:i_step:i_finish

 for j = j_start:j_step:j_finish

 some commands

 end

end

Indenting helps

simplify debugging

i = i + i_step

i = i_start

i

<= i_finish

?

j = j + j_step

NO

YES
NO

YES

j

<= j_finish

?

j = j_start

some commands

2D arrays and for loops

Editing a greyscale image

% cycle through each row

for i = 1:100

 % cycle through each column

 for j = 1:200

 % set the pixel value for row i, column j

 image(i,j) = (i+j)/300;

 end;

end;

Gray Scale from black to white

Plotting 3D polynomials

x = 0:5;

y = -5:5;

for i = 1:length(x),

 for j = 1:length(y),

 Z(j, i) = 5 * x(i)^ 2 + y(j)^ 3;

 end;

end;

surf(Z)

Surface plot

3D arrays and image processing

myPicture = imread('photo.jpg')

[rows,cols,colours] = size(myPicture);

for i=1:rows

 for j=1:cols

 for k=1:3

 myPicture(i,j,k) = 255 - myPicture(i,j,k);

 end

 end

end

imshow(myPicture);

Negative (inverted colours)

Recommended Reading
Chapter 6

2D and 3D Arrays

Introduction to Matlab 7 for Engineers (2nd

ed)

A Concise Introduction to Matlab (1st ed)

Topic Section Pages Section Pages

Multidimensional Arrays 2.2 81-83 2.2 49

Nested for loops 4.5 211-212 4.4 172-173

Plotting surfaces 5.8 335-338 5.7 251-254-

The Department of Engineering Science

The University of Auckland

Chapter 7

Graphics

Learning outcomes

• Label your plots

• Create different types of 1D data plots
(log graphs, bar graphs and polar plots)

• Control line types, axis types and colours
on 1D plots

Learning Outcomes

• Create several figures at the same time

• Plot several sets of data on the same
graph

• Create subplots

• Create different types of 2D data plots
(surface maps, contour plots and quiver
plots)

• Make Matlab movies

Labelling plots

• You have already seen basic plotting of one array
against another. This is simple to do in Matlab using
the plot command. It is also simple to label plots
using the title, xlabel and ylabel commands

x = 0 : 2*pi/100 : 2*pi;

y = sin(x);

plot(x,y)

xlabel('x')

ylabel('y')

title('Example plot')

Always label axes on plots you produce in labs or projects.

Plotting Multiple Data Sets

• The plot command can be used to plot
several lines on the same graph, e.g.:

x = 0 : 2*pi/100 : 2*pi;

y1 = sin(x);

y2 = cos(x);

y3 = sin(x) + cos(x);

plot(x,y1,x,y2,x,y3)

xlabel('x')

ylabel('y')

title('Example plot - multiple data sets')

Plotting Multiple Data Sets

• An alternative is to use the hold on command to hold
on to your current plot:

x = 0 : 2*pi/100 : 2*pi;

y1 = sin(x);

y2 = cos(x);

y3 = sin(x) + cos(x);

plot(x,y1)

hold on

plot(x,y2)

plot(x,y3)

xlabel('x')

ylabel('y')

title('Example plot - multiple data sets')

Line Colors, Symbols and Types

• You can also specify your own line styles in
the plot command.

• For full details enter help plot in Matlab.

 b blue . point - solid

 g green o circle : dotted

 r red x x-mark -. dashdot

 c cyan + plus -- dashed

 m magenta * star

 etc.

Line Colors, Symbols and Types

• To specify line types combine your desired
color and symbol/line type into a string
and use it as an argument in the plot
command.

plot(x,y1,'r-.',x,y2,'go',x,y3,'b+')

red dashdot

green circle

blue plus

Legends

• With multiple lines on the same plot it is
a good idea to add a legend.

legend('sin(x)', 'cos(x)', 'sin(x) + cos(x)')

You can move the

position of the legend

on the figure with the

mouse.

Axes

• Matlab will automatically determine the
maximum and minimum values for the
axes. To override these use the axis
command to enter an array containing
xmin, xmax, ymin, ymax.

axis([0, 9, -2, 2])

Grid Lines

• If you like grid lines on your plots you can
add them using the grid on command.

grid on

Creating Additional Figures

• What happens if you enter the following?

x = 0 : 2*pi/100 : 2*pi;

y1 = sin(x);

y2 = cos(x);

plot(x,y1)

title('Example plot #1')

plot(x,y2)

title('Example plot #2')

Creating Additional Figures

… you end up with one figure window and
it contains a plot of y=cos(x).

• To make an additional figure window
enter the command figure before
making the second plot.

plot(x,y1)

title('Example plot #1')

figure

plot(x,y2)

title('Example plot #2')

Note: The second

figure window often

appears on top of first

figure window by

default.

Subplots

• Sometimes it makes sense to present
data as a set of plots contained inside
the same figure, this can be done with
the subplot(m,n,p) command.

m = 2

n = 2

p = 1 p = 2

p = 3 p = 4

subplot(2,2,1)

plot(x,y1,'r-.')

title('y = sin(x)')

subplot(2,2,2)

plot(x,y2,'go')

title('y = cos(x)')

subplot(2,2,3)

plot(x,y3,'b+')

title('y = sin(x) + cos(x)')

m = 2

n = 2

p = 3

You may want to

resize the figure

window with the

mouse if you are using

subplots.

Log graphs

• You can create line graphs with log
scaling on either or both axes using the
commands semilogx, semilogy, and
loglog. Syntax is the same as plot.

• This can be useful when you are
deciding on models to fit to data sets.

y = mx + c

y = cemx

y = m log(cx)

y = c xm

Bar graphs

• You can create a bar graph with the bar
function: bar(x,y)

• Similar to plot but draws bars for each
x,y value pair

• Make sure there are no duplicate values
in the x array.

Bar graphs: example

Polar graphs

• In some applications we need to depict
data which has an angle dependence.

– If you were designing navigational software
for a yacht you would need to know how
often the wind blows from each direction.

• A polar plot is one way to depict such
data. The Matlab command for this is
polar(angleData, plotData).

Array of angles

(in radians)

Array of data to be plotted

Polar graphs: Example

Plot represents the fraction

of time the wind blows from

each direction.

Created using:

polar(angles, fracWind)

Data represents wind

directions in Evansville, IN.

Function Plotting

• Note that you can also plot functions
directly (instead of building arrays with
the function values and plotting them).
To do so use the ezplot command.

ezplot('x^2-x',[0,2])

function

domain

Plotting 2D Arrays

• Suppose we have a 2D array containing
the depths to the top of an oil reservoir.

Plotting 2D Arrays

• It would be more useful to visualize this
data in 2 or 3 dimensions. Use the surf
command.

surf(resTop)

zlabel(‘Depth, ft’)

colorbar

Surface Plots

• You can view the data in a surface plot
from other angles by rotating the plot
using the mouse (choose Tools->Rotate
3D from the figure menu).

If you want to create a

2D plot which views the

surface from directly

above you can use

pcolor instead of surf.

Contour Plots

• A contour plot is also a useful way to
represent this kind of data. Matlab’s
contour command will create contour
plots from data in a 2D array.

contour(resTop)

To fill the area

between the

contours with a

color use

contourf.

Using Meshgrid to create a mesh

• Some 2D and 3D plots need 2D arrays of
x and y values. The meshgrid
command generates these from 1D
arrays.

x = [1 2 3 4];

y = [0 0.5 1];

[X,Y] = meshgrid(x,y)

1D

1D

X =

 1 2 3 4

 1 2 3 4

 1 2 3 4

Y =

 0 0 0 0

 0.5000 0.5000 0.5000 0.5000

 1.0000 1.0000 1.0000 1.0000

2D

2D

Quiver Plots

• Quiver plots are another useful way to
represent many kinds of engineering
data.

• These plots are useful for displaying
vector quantities (e.g. velocity, electric
or magnetic fields etc.) with arrows
indicating both direction and magnitude.

• Quiver plots are often combined with
surface plots and/or contour plots.

Quiver Plots

• Assume we have:

– a 2D array variable containing a velocity)

– 2D arrays of x and y grid points.

• To create the quiver plot enter:

The arrows on the quiver plot are vectors
with components dp/dx and dp/dy

Quiver Plots

quiver(X,Y,dpdx,dpdy)

Putting Plots into Documents

• If you want to put your plot into another
document (such as a Microsoft Word
document) first choose Edit->Copy
Figure from the menu on the figure.

• The figure can then be pasted into the
other document.

Figure Backgrounds

• If you are pasting figures into other
documents it is often nicer to use a
white background for the figure.

• You can set this in the Edit->Copy
Options menu (choose “Force white
background”)

Animation

• Animation is quite simple in Matlab …
just plot data repeatedly on a single
figure.

• For example to plot the function
y=sin(x+t)

x = 0:2*pi/100:2*pi;

for t=0:0.05:5

 y=sin(x+t);

 plot(x,y)

 pause(0.2)

end

Pause of 0.2

seconds

between

frames.

For loop counting

over an array of

different times

t=0,0.1,0.2, …,

9.9, 10.

Movie Generation

• To create a movie a sequence of frames
are “grabbed”, stored in an array and
written out as a .avi file.

%initialise frame counter

nFrame = 1;

x = 0:2*pi/100:2*pi;

for t=0:0.05:5

 y=sin(x+t);

 plot(x,y)

 pause(0.2)

 % grab frame and store

 movieData(nFrame) = getframe;

 nFrame = nFrame + 1;

end

% output movie

movie2avi(movieData,'animation.avi');

Optional Reading

Chapter 7

Graphics and Image Processing

Introduction to Matlab 7 for Engineers (2nd

ed)

A Concise Introduction to Matlab (1st ed)

Topic Section Pages Section Pages

Plotting basics 5.1 259-265

269-271

5.1 205-207

209-211

Subplots and hold 5.2 271-276

279-280

5.2 211-216

Log graphs 5.3 282-285 5.2 217-219

Polar plots 5.3 290-291 5.2 220-221

Surfaces and contour plots 5.8 335-385 5.7 251-254

Animation B.1 661-663

