
The Department of Engineering Science

The University of Auckland

Chapter 3

Functions and Debugging

Learning Outcomes

• Explain what a function is

• Call functions from your own programs

• Define your own functions

• Examine the function and command
workspaces

• Debug script files and functions

What is a Function?

YOU PLACE INPUTS INTO THIS

FUNCTION, WRITE THE

APPROPRIATE CODE AND IT SPITS

OUT WHATEVER OUTPUTS YOU

WANT

FUNCTIO

N

What is a Function?

• Mathematical Function

y = f (x)
– Takes input and transforms it into output

• MATLAB Function

y = func(x)

– Examples x = linspace(-pi, pi, 10);

 length(x)

 y = sin(x)

function input

(argument)

function output

Why Use Functions?

• Enables “divide and conquer” strategy

– Programming task broken into smaller tasks

• Code reuse

– Same function useful for many problems

• Easier to debug

– Check right outputs returned for all possible
inputs

• Hide implementation

– Only interaction via inputs/outputs, how it is
done (implementation) hidden in function

Black-Box

Behaviour of a Function

• Functions should be well commented

– Users must be able to find out how a
function works

• Functions should be well defined

– Given inputs should give known outputs

• Functions should be well tested

– Inputs should always give correct outputs

Calling Functions

Functions can be called from command
line or a script

To call a function we need to know:

• The name of the function

• The function input(s)

• The function output(s)

Calling Functions

• Function names are case sensitive

 (meshgrid, meshGrid and MESHGRID are
interpreted as different functioins)

• Inputs can be either numbers or
variables

Calling Functions

function input

function output

Calling Functions (inputs)

• Inputs are also called arguments

• Inputs are passed into the function
inside of parentheses, separated by
commas

• Order of input arguments is very
important

• Name of input arguments can be
anything you like

Calling Functions (outputs)

• The output is usually assigned to
variable(s) so that it can be used

• If more than one variable is returned we
use an array (square brackets)

[rows,cols] = size([3 2 1]);

• If only one variable is returned we do
not need an array

y=atan(0.5)

• Some functions have no outputs

plot(x,y)

Writing Functions

“function” keyword

function name

output variable/s

(must be assigned a value in
function body)

Return statement, signifies the

end of the function.

function body

(can be 1 line or 100’s of lines)

input variable/s or
“arguments”

(these are the only
variables whose values
the function can access)

file name

Different Inputs and Outputs

• Multiple outputs
– No inputs function [o1, o2, …] = myfunc()

– One input function [o1, o2, …] = myfunc(i1)

– Multiple inputs function [o1, o2, …] = myfunc(i1, i2, …)

• One output
– No inputs function [o1] = myfunc()

– One input function [o1] = myfunc(i1)

– Multiple inputs function [o1] = myfunc(i1, i2, …)

• No outputs
– No inputs function [] = myfunc()

– One input function [] = myfunc(i1)

– Multiple inputs function [] = myfunc(i1, i2, …)

Function filenames

• All functions are saved to a file with a .m extension

• The filename (without the .m) must match EXACTLY
the function name

• Function names may only use alphanumeric characters
and the underscore

• Functions names should NOT:

– include spaces

– start with a number

– use the same as an existing command

• Consider capitalising the first letter of a function name

(a common convention)

Function headers

• All functions should have a header comment, just
under the function defintion

• Header should describe

– input(s) and output(s)

– purpose of the function

– who wrote it

 function [f] = ConvertToFarenheit(c)

% ConvertToFarenenheit(c) takes a

temperature value c

% measured in degrees celsius and returns

the equilvalent

% value in farenheit

% Author: Peter Bier

f = 9/5 * c + 32;

return

Function headers

• All functions should have a header comment, just
under the function defintion

• Header should describe

– input(s) and output(s)

– purpose of the function

– who wrote it

• Header comment becomes the function help

>> help ConvertToFarenheit

ConvertToFarenenheit(c) takes a temperature value c

measured in degrees celsius and returns the equilvalent

value in farenheit

Author: Peter Bier

Polar to cartesian example

x

y

x = r cosθ

y = r cosθ

θ

r

• Polar coordinates useful for describing

 circular shapes

• Need to convert to Cartesian coordinates
for plotting

Pseudocode

INPUTS: r and θ

1. Calculate x value

2. Calculate y value

OUTPUTS: x and y

The PolarToCartesian Function

function [x, y] = PolarToCartesian(r, theta)

% PolarToCartesian transfroms r and theta from polar

% coordinates into (x,y) cartesian coordinates

% Inputs: r = radial distance

% theta = radial angle

% Outputs: x = cartesian x coordinate

% Y = carteisan y coordinate

% Author: Peter Bier

% we use the dot operator so that our code will also work

% if r and theta are arrays.

% Note the use of the semi-colon to suppress output,

% otherwise our function will print ou the x and y values

% when calculating them

x = r .* cos(theta);

y = r .* sin(theta);

return;

Using our Function

• You use your functions exactly as if they
were built-in MATLAB functions

 % spiral.m draws a spiral using polar coordinates.
% Author: Peter Bier

% our array of 20 radius values will range from 0 to 10

spiralRs = linspace(0,10,20);

% our array of 20 theta values will range from 0 to 2pi,

% ie a full circle

spiralThetas = linspace(0, 2*pi, 20);

[x, y] = PolarToCartesian(spiralRs, spiralThetas);

plot(x,y);

Using our Function

The Matlab Workspace

• When you create variables in Matlab

– Via the command window

– In script files

 Matlab stores them in the “workspace”

The koru.m script files creates

the variables in the workspace

Starting Over

• Matlab can be cleared

Function Workspaces

• Functions create their own workspaces

• Function inputs are also created in workspace
when function starts

• Function doesn’t know about any variables in
any other workspace

• Function outputs are copied from workspace
when function ends

• Function workspaces are destroyed after
functions end
– Any variables created in function “disappear” when

function ends

Debugging: Stepping In

Debugging: Matlab Workspace

Debugging: Function Workspace

Debugging: Stepping Out

Recommended Reading

Chapter 3

Functions, Problem Solving and

Debugging

Introduction to Matlab 7 for Engineers (2nd

ed)

A Concise Introduction to Matlab (1st ed)

Topic Section Pages Section Pages

Debugging 1.4 32-34 1.4 25-26

Workspaces 2.1 80-81 1.2 47-48

Debugging 4.7 228-233 4.6 184-188

Writing functions 3.2 148-152 1.4 126-130

The Department of Engineering Science

The University of Auckland

Chapter 4

Logical Operators and
Conditional Statements

Learning Outcomes

• Use pseudocode and flow charts to describe
programs

• Understand relational and logical operators

• Understand conditional statements

• Create and use boolean variables

• Control program flow with conditional
statements and boolean variables

Controlling your Computer

• A computer program is
a sequence of simple
steps.

• Each step does one
thing.

• Before writing a program, we need a plan

• A plan helps us focus on the problem, not the code

• Once we have written a plan, the plan can be
implemented in whatever language we want to use
(Matlab, C, Java, Perl, Python, etc)

• Two common ways of writing a plan are pseudocode
and flowcharts

Pseudocode and Flowcharts

• Pseudocode
– Text description of program steps

• May contain fragments of code
• Doesn’t contain the nitty-gritty details

– Similar to a recipe

• Flowcharts
– Geometric symbols to describe program steps
– Captures “flow” of program

• Both are useful for any programming
language.

Flowchart Elements

read radius

area = p . radius2

print radius, area

is

radius < 0

?

start main

stop main

Beginning of

algorithm

End of

algorithm

No

Yes
Input

Computation

Output

Comparison

From Etter Figure 3.1 page 87

Flow charting functions

Programming Example

• Calculate your final percentage given your
coursework and exam percentages

Pseudocode

1. Get coursework percentage C

2. Get exam percentage E

3. Calculate C + 10

4. Calculate E + 10

5. Calculate (C + E) / 2

6. Set final percentage F to be minimum of C +
10, E + 10, (C + E) / 2

Programming Example

• Calculate your
final percentage
given your
coursework and
exam percentages

read E

read C

start main

stop main

Cinc = C + 10

Einc = E + 10

Avg = (C + E) / 2

F = min(Cinc, Einc, Avg)

min is an

in-built Matlab

function

MATLAB Program

Note that
pseudocode makes
good comments

C Program

F = Avg
Yes

is

Avg < F

?

No

Yes

Implementing Min

• What if min was not an in-built function?

– Need comparisons and logic

• Pseudocode

1. F = Cinc

2. If Einc < F, set F = Einc

3. If Avg < F, set F = Avg

• Flowchart

F = Cinc

is

Einc < F

?

No

F = Einc

Relational Operators

• Relational operators test relationships between
variables
A == B tests whether A equals B

A ~= B tests whether A does not equal B

A < B tests whether A is less than B

A > B tests whether A is greater than B

A <= B tests whether A is less than or

 equal to B

A >= B tests whether A is greater than or

 equal to B

>> a=3;

>> b=4;

>> a==b

ans =

 0

>> a~=b

ans =

 1

>> a<b

ans =

 1

Using Relational Operators

>> a>b

ans =

 0

>> a<=b

ans =

 1

>> a>=b

ans =

 0

false

true

Logical Operators

• Logical operators are test conditions

– expressed as relationships between
variables

– 0 is false, everything else is treated as true

• Common logical operators

 ~p true if p is not true

p & q true if both p and q are true

p | q true if either p or q are true

Using Logical Operators

>> a=3;

>> b=4;

>> ~(a==b)

ans =

 1

>> c=5;

>> (a<b) & (b<c)

ans =

 1

>> (a>b) | (a>c)

ans =

 0

>> (a>b) | (b<c)

ans =

 1

Conditional Statements

• Dissecting the conditional:
• “If it is sunny outside then I will cycle to uni.”

• “If I pass the exam then I will be happy.”

– Using MATLAB

• “If e > 50 then disp('happy')”

condition dependent

condition dependent

condition dependent

if … end

• Syntax

if condition

 some commands
end

end lets MATLAB know when

conditional statement is finished

dependent

if … end

Pseudocode

1. If conditon, some commands

Alternative Pseudocode

1. If condition
a) Some commands

Flowchart

Yes

is

condition

?

No

Some

commands

if … end Example

File: myif.m

a=2;

b=5;

if a<b

 disp(a)

end

Matlab command prompt

>> myif

 2

>>

Describing myif.m

is

a < b

?

No

Yes

display a

begin

end

a=2

b=5

Pseudocode Flowchart

1. Set a = 2

2. Set b = 5

3. If a < b

a) Display a

if … else … end

• Syntax

if condition

 some commands

else

 some other commands

end

This section is

OPTIONAL

end lets MATLAB know when

the conditional statement is finished

if … else … end

• Pseudocode

1. If condition

 a) Some commands

2. Else

 a) Some other commands

if … else … end

• Flowchart

if … else … end Example

File: myifelse.m

a=5;

b=4;

if a<b

 disp(a)

else

 disp(b)

end

Matlab command prompt

>> myifelse

 4

>>

Describing myifelse.m

Pseudocode Flowchart

1. Set a = 5

2. Set b = 4

3. If a < b

a) Display a

4. Else

a) Display b

No

is

a < b

?

Yes

begin

a=5

b=4

display a

end

display b

if … elseif … else … end

• Syntax

if condition

 some commands
elseif another condition

 some different commands
else

 some other commands
end

This section is

OPTIONAL

end lets MATLAB know when

the conditional statement is finished

if … elseif … else … end

• Psuedocode

1. If condition

 a) Some commands

2. Else If another condition

 a) Some different commands

3. Else

 a) some other commands

if … elseif … else … end Example

File: myelseif.m

a=5;

b=4;

if a==b,

 disp(a)

 disp(b)

elseif a<b,

 disp(a)

else

 disp(a)

end

Matlab command prompt

>> myelseif

 4

>>

Describing myIfElseIfElse.m

Pseudocode Flowchart

1. Set a = 5

2. Set b = 4

3. If a == b
a) Display a and b

4. Else if a < b
a) Display a

5. Else
a) Display b

display b

No

is

a = b

?

Yes

begin

a=5

b=4

display a

end

display b

is

a < b

?

Yes

display a

No

if (a<b) & (b<c)

 disp(‘b is between a and c’)

end

Testing Multiple Conditions

• Suppose we want to know if a < b < c

 if (a < b < c)  Two relationships!!

• a < b and b < c

• Test whether both are true.

Note use of “&”

to test whether

both conditions

are true

More on precedence

• Suppose we want to check if a is less
than b and c

• This statement is ambiguous and can be
interpreted in a few ways

• Use brackets to clarify which meaning

check if a is less than b and c

• test that the value of a is less than b AND that the
value of a is less than c

(a < b) & (a < c)

• find the value of b & c and test to see if a is less than
this

a < (b & c)

• find the value of a<b and see if both this value and c
are true

(a < b) & c

Implementing Min Again

% myMin – finds min(Cinc, Einc, Avg)
function [F] = myMin(Cinc, Einc, Avg)

% If Cinc < Einc and Avg, set F = Cinc
if (Cinc < Einc) & (Cinc < Avg),
 F = Cinc;
% If Einc < Cinc and Avg, set F = Einc
elseif (Einc < Cinc) & (Einc < Avg),
 F = Einc;
% If Avg < Cinc and Einc, set F = Avg
else % Must be true by default
 F = Avg;
end;

return;

Boolean Variables

• Boolean variables used store “true” and
“false” values.

• Very useful with relational operators and
conditional statements.

• MATLAB uses 1 to represent true

– Actually any NONZERO

 and 0 to represent false.

Boolean Variables

• Create boolean variables just like other
variables:

• Use boolean variables to store answer to
some “question” that controls a
conditional statement or while loop.

isFinished = 1 % true

isFound = 0 % false

Variable name
Variable value

Using Boolean Variables

• Good programming practice to choose a
variable name which indicates what kind
of value is stored in the variable

• For booleans it is common practice to
start the variable name with the word 'is'

• Use meaningful boolean names, eg
isSuccessful rather than status

• Try to write statements which read well.

 if isSuccessful  if ~isFailure 

 do something do something
 end end

Using Boolean Variables

• Choose a name that is a question with a
yes/no or true/false answer

if (atUniversity & stillAStudent)

needMoreMoney = 1;

end

Recommended Reading

Chapter 4

Logical operators and conditional

statements

Introduction to Matlab 7 for Engineers (2nd

ed)

A Concise Introduction to Matlab (1st ed)

Topic Section Pages Section Pages

Relational operators and conditional

statements

1.6 44-48

Relational operators 4.2 191-192 4.1 153-155

Logical operators 4.3 194-197 4.2 156-160

Conditionals 4.4 201-208 4.3 163-167

