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Learning outcomes 

• Solve systems of linear equations using 
MATLAB 

• Solve basic linear algebra problems with 
MATLAB 

• Use matrix transformations (rotation, 
translation, scaling, shearing) 

• Apply transition matrices 
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Solving systems of linear equations  
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To solve this equation in MATLAB we simply type the following: 

A = [1 2 3; 2 5 3; 1 0 8]; 

b = [1; 6; -6]; 

x = A \ b 

 

The left division method performs the equivalent to Gaussian 

elimination  

 



Systems of Linear Equations 

A traffic flow example  

 • Many engineering problems can be 
modelled by a system of linear equations. 

• Example: Traffic Flow Modelling 
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5 Steps for Problem Solving 

1. State the problem clearly 

2. Describe the input and output 
information 

3. Work the problem by hand (or with a 
calculator) for a simple set of data 

4. Develop a solution and convert it to a 
computer program 

5. Test the solution with a variety of data 



1. State the Problem Clearly 

Determine x1 and x2 using the known 
traffic flows of 400, 500, 600 and 700 
cars/hour on segments of Main St, King 
St and Brown St (which are one way 
streets). 

 



2. Describe the input and output 

information 

Input: 

– Main St (north of intersection 1), 500 cars/hour 

- King St (west of intersection 1), 700 cars/hour 

- Brown St, 400 cars/hour 

- Main St (south of intersection 2), 600 cars/ hour 

Output:  

- x1 cars per hour travelling on King St (east of 
intersection 1) 

- x2 cars per hour travelling on Main St (between 
intersection 1 and intersection 2) 

 

 

 



3. Work the Problem by Hand 

• Balance the flow of cars into and out of 
each intersection. 

• Intersection 1 

• Intersection 2  

   clearly x2 is equal to 1000 cars/hour, so 
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4. Develop a Solution and Convert 

it to a Computer Program 

• The two equations we need to solve can 
be expressed as 

 

 

• To solve this problem in Matlab we can 
use the “left division” operator 
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A = [1, 1; 0, 1;] 

b = [1200; 1000;] 

x = A\b 



Matrix Transformations  

• A point (or points) can be transformed 
by using a square matrix.  It is possible 
to create matrices representing 
stretches, enlargements, reflections and 
rotation. 

• To transform a point we perform a 
matrix multiplication with the 
transformation matrix and the point. 
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% matrix representing the unit square 

S = [0 1 1 0; 0 0 1 1] 

  

% plot square 

fill( S(1,:), S(2,:), 'r'); 

title('Unit square transformed'); 

axis equal 
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% matrix to stretch x axis by a factor of 3 

X = [3 0; 0 1] 

% matrix to reflect in y axis 

Y = [-1 0; 0 1] 

% matrix to rotate by pi/4 radians (45 
degrees) 

R = [cos(pi/4) -sin(pi/4); sin(pi/4) 
cos(pi/4)] 
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% perform transformations 

T = R * Y * X *S 

  

% plot transformed square 

hold on 

fill( T(1,:), T(2,:), 'b'); 
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Learning outcomes  

• Explain what a "function" function is 

• Use fzero to find the root of a function 

• Use ode45 to solve a first order 
differential equation 

• Use feval to write your own "function" 
functions 
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What is a "function" function?  

• Where a function needs to have access 
to another specified function in order to 
perform its task. 

• This name of this function  is provided 
as an input argument to the first 
function. 
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Finding roots with fzero  

• The fzero function allows us to find x 
values for any function f(x), such that 
f(x)=0 .  These x values are called roots. 

 

• Consider the problem of solving the 
equation: x2 – x – 12 = 0 

  

• This can be done by hand but it is also 
easy to solve using MATLAB. 
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function px = MyPolynomial(x) 

  px = x.^2 - x - 12; 

return 

 

• For example to look for roots near x=5 

root = fzero(@MyPolynomial, 5) 

• This will produce  

root = 

            4 
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• To find the other root we need to start 
looking from a different value: 

root = fzero(@MyPolynomial, -5) 

 

• This will produce the following output: 

  

root = 

 -3 

• The @ symbol indicates the name of the 
function for fzero to evaluate   22 



Solving ODEs in MATLAB  

• dy/dt = f(t,y) 

• the derivative can be written as some 
function of the independent variable and 
dependent variable. 
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A simple ODE 
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ODE45 

The MATLAB solver functions need: 

 1. A MATLAB function that calculates the derivative for 
any given values of the independent and dependent 
variables 

2. time span array containing two values (a start time 
and finish time) 

3. An initial value   

  

It will produce two outputs: 

1. An array of time values (the independent variable) 

2. An array of corresponding solution values (the 
dependent variable) 
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Create our function definition 

function dvdt = MuddyTankFlowRate(t,v) 

% calculate the flow rate out of a muddy tank of 
water 

% inputs: v the volume of water 

%        t the time since the start of the flow 

% output: dvdt the flow rate 

  

 k = 3; 

 dvdt = k * v / t; 

return 
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Set initial conditions. Call ODE45 

% Script to solve the volume of fluid left in a muddy tank  

% that contains a hole 

  

% set up a time span of 10 minutes (t is measured in 
seconds) 

timeSpan = [0, 600] 

  

% the initial volume at time t=0 is 1000 litres 

vInit = 1000 

  

% solve our ODE 

[t,v] = ode45(@MuddyTankFlowRate, timeSpan, vInit); 

 
27 



Output of ODE45 

t 

1 

1.01674590954340 

1.03349181908679 

......... 

6.83913766802859 

6.91956883401430 

7 
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v 
1000 
951.398686926528 
905.896867659521 
863.251189185083 
......... 
3.12675517422768 
3.01898421018001 
2.91610943086821 
 



Use results 

% plot result 

plot(t,v) 

title('Plot of fluid level in tank of muddy 
water') 

xlabel('time (seconds)'); 

ylabel('volume (litres)') 
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feval 

• We can write our own "function" 
functions 

function px = MyPolynomial(x) 

   px = x.^2 - x - 12; 

return 

 

Call passing required arguments 

p = feval(@MyPolynomial,2) 
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Function name stored as a variable 

% create a variable to contain the address 
of our function 

myFunctionAddress = @MyPolynomial; 

  

p = feval(myFunctionAddress,2) 
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Suggested Reading 
Chapter 11 

Differential Equations and “Function” 

Functions 

Introduction to Matlab 7 for Engineers (2nd 

ed) 

A Concise Introduction to Matlab (1st ed) 

Topic Section Pages Section Pages 

Using fzero 3.2 156-157 3.2 131-132 

Solving ODEs 8.5 498-505     
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