The Department of Engineering Science The University of Auckland

Welcome to

MATLAB Programming Course

Course Information

- Jim Greenslade- Course Organiser and MATLAB Lecturer
- Office 439.233 j.greenslade @auckland.ac.nz
- Lab Tutors: PhD students from the Department of Engineering Science.

Course Components

- 4×60 minute lectures
- Wednesday AND Thursday

$$
\begin{aligned}
& \text { - 9:00-10:00 } \\
& \text { - 1:00-2:00 }
\end{aligned}
$$

- 4×90 minute labs
- Wednesday AND Thursday
- 10:30-12:00
- 2:30-4:00

Text Books

- MATLAB - Suggested texts:
"A Concise Introduction to Matlab"; or
"Introduction to MATLAB 7 for Engineers" William J Palm III
- Both books on "desk-copy" in the Engineering Library

Software

- MATLAB
- Available from the Science Student Resource Centre
- G16 ground level of the Maths Building 303
- Octave
- "free software"
- "mostly compatible with MATLAB"
- Course staff can give no assistance or assurances
http://www.gnu.org/software/octave

The Department of Engineering Science The University of Auckland

Chapter 1

An Introduction to MATLAB

Learning outcomes

- Use Matlab as a calculator
- Create and use variables
- Write a script file
- Get input from the user and display output
- Understand the importance of commenting
- Write simple comments

Course Motivation

- Computers are important tools for modern-day engineering.
- Computers allow engineers to perform time consuming tasks and solve problems quickly.
- Computers make visualisation of models possible.

Image: Pressure in an oil reservoir

Solving Equations

- Solving simultaneous equations:

$$
\begin{aligned}
& 2 x+y=4 \\
& x-y=-1
\end{aligned}
$$

- Can solve by hand to get $x=1, y=2$

Solving More Equations

- Solving simultaneous equations:

$$
\begin{array}{r}
2 x+y+2 z=4 \\
x-y-z=-1 \\
y-2 z=4
\end{array}
$$

- Can solve by hand to get

$$
x=1.2, y=2.8, z=-0.6
$$

Solving Even More Equations

- Solving simultaneous equations:

$$
\begin{aligned}
& 2 x_{1}-x_{2}+3 x_{4}-x_{6}+2 x_{7} \quad+3 x_{9}+x_{10}=1 \\
& x_{1}+x_{3}+3 x_{4}+2 x_{5}+x_{6}+3 x_{9}-x_{10}=2 \\
& 3 x_{1}+3 x_{2}-x_{3}-x_{4}+2 x_{5}+3 x_{6}-x_{7}+2 x_{8}+3 x_{9}+x_{10}=1 \\
& 2 x_{1}+3 x_{2}+3 x_{3}+2 x_{4}+x_{5}+2 x_{6}+x_{7}+x_{10}=3 \\
& 3 x_{1}-x_{2}-x_{3}+2 x_{5}-x_{6}+x_{7}+3 x_{8}+x_{9}+2 x_{10}=2 \\
& x_{1}-x_{3}+x_{4}+2 x_{5} \quad-x_{7}+3 x_{8}-x_{9}+2 x_{10}=3 \\
& x_{1}+x_{2}+x_{4}-x_{5}+x_{6}+x_{7}+2 x_{8}+x_{9}+2 x_{10}=1 \\
& 3 x_{1}+x_{2}-x_{3}+3 x_{4}-x_{5}+3 x_{6} \quad-x_{10}=0 \\
& -x_{1}+2 x_{2}+x_{3}+x_{4}+3 x_{5}-x_{6}+x_{8}-x_{9}-x_{10}=-1 \\
& -x_{1}+2 x_{2} \quad+3 x_{4}-x_{5}+3 x_{6}+x_{7}-x_{8}-x_{9} \quad=2
\end{aligned}
$$

- Can solve by hand...!?

Using MATLAB

Solving Equations

- Often need to solve systems with 10,000 or 100,000 equations
- Can be done very quickly using a computer
- This is common in engineering
- Operations research
- Mechanics and dynamics
- Electrical circuits

MATLAB

- MATLAB = MATrix LABoratory
- Extremely useful mathematical software
- Can be used as an advanced calculator/graphing tool
- Can be used as a programming language

Why use MATLAB?

- MATLAB is an easy introduction language for programming.
- MATLAB provides a "quick-and-easy" development environment.
- MATLAB is very useful in many engineering contexts.
- MATLAB is used in industry.

Programming with MATLAB

- Programming is a TRANSFERABLE SKILL
- Programming concepts are common for all languages
- Syntax may change, but usually similar
- MATLAB is PLATFORM INDEPENDENT - Can write software once for many OS
- MATLAB can be linked to other software - C/C++, Java, Fortran

MATLAB in Your Degree

- MATHEMATICAL MODELLING 2 and 3
- You will need to use MATLAB to solve applied mathematical models.
- Other courses
- structural analysis
- electrical circuits
- systems and control
- Plotting results, checking long calculations, etc.

MATLAB is a Marketable Skill

"Job Description: Create and maintain steady-state and dynamic thermodynamic system models from conceptual design through the complete design/development process (using industry tools such as MATLAB, Simulink, Altia, etc.). Will also support the design, development, and testing of hardware components and/or subsystems."

Calculations in MATLAB

- MATLAB can be used in a wide range of ways to help you solve engineering problems.
- We will begin by using MATLAB as an advanced calculator:
- To express mathematics in a form suitable for MATLAB.
- To use built-in mathematical functions in calculations.
- To use variables in calculations.

MATLAB as a Calculator

- You can enter expressions at the command line and evaluate them right away. previous command
next
command

The >> symbols indicate where commands are typed.

Mathematical Operators

Operator	MATLAB	Algebra
+	+	$5+4=9$
-	-	$5-4=1$
\times	\star	$5 \star 4=20$
\div	$a^{\wedge} \mathrm{b}$	$5^{\wedge} 4=625$
a^{b}	5	$5=1.25$

BEDMAS

B = Brackets
E = Exponentials
D = Division
$\mathrm{M}=$ Multiplication
A = Addition
S = Subtraction

$$
\begin{gathered}
\gg 3 * 4+2 \\
\text { ans }= \\
14 \\
\gg 3 *(4+2) \\
\text { ans }= \\
18
\end{gathered}
$$

Be careful using brackets - check that opening and closing brackets are matched up correctly.

Built-In Functions

- Like a calculator, MATLAB has many built-in mathematical functions.

$$
\begin{gathered}
\gg \text { sqre }(4) \\
\text { ans }= \\
2 \\
\gg \text { abs }(-3) \\
\text { ans }= \\
3
\end{gathered}
$$

MATLAB Help

- Find out more about functions using MATLAB's help
>> help - gives command line help
>> doc \quad - gives GUI help

Command Window
File Edit Debug Desktop Window Help
(i) To get started, select MATLAB Help or Demos from the Help menu.
\gg help log
LOG Natural logarithm.
LOG (X) is the natural logarithm of the elements of X .
Complex results are produced if X is not positive.
\quad See also logip, log2, log10, exp, logm, reallog.
Reference page in Help browser
\quad doc log
$\gg \mid$

Variables

- We use variables so calculations are easily represented.

$$
\begin{aligned}
& C=(F-32) \times \frac{5}{9} \\
& F=100 \Rightarrow C=37.8 \\
& F=32 \Rightarrow C=0
\end{aligned}
$$

- You can think of variables as named locations in the computer memory in which a number can be stored.

MATLAB Variables

$$
\begin{aligned}
& \gg F=100 \\
& \mathrm{~F}= \\
& 100 \\
& \gg C=(E-32) * 5 / 9 \\
& \text { C }= \\
& 37.7778 \\
& >P F=32 \\
& \mathrm{~F}=32 \\
& \gg C=(F-32) * 5 / 9 \\
& \mathrm{C}=
\end{aligned}
$$

Memory as a Filing System

- You can think of computer memory as a large set of "boxes" in which numbers can be stored.
- The values can be inspected and changed.

- Boxes can be labelled with a variable name.

Assigning Variables

- Either 1) Creates the variable
- Created in MATLAB Workspace
- Or 2) Changes the variable value
- Always left-to right
>> a = expression calculation

$$
\begin{aligned}
& \gg a=2 \\
& a= \\
& 2 \\
& \gg 3=a \\
& \text { ??? } 3=a \\
& \text { Error: ... } \\
& \gg b=a \\
& \mathrm{~b}=
\end{aligned}
$$

Special Variables

- MATLAB has some special variables:
- ans is the result of the last calculation
- pi represents π
- Inf represents infinity
- NaN stands for not-a-number and occurs when an expression is undefined e.g. division by zero
- i, j represent the square root of -1 (necessary for complex numbers)

Calculations with Variables

- Suppose we want to calculate the volume of a cylinder.
- It's radius and height are stored as variables in memory.
>> volume = pi*radius^2*height

Script Files

- You can save a sequence of commands for reuse later
- Each line is the same as typing a command in the command window
- Save the file as filename.m

Script Files

- Run sequence of commands by typing
filename
in the command window

$$
\begin{aligned}
& \text { >> vol_surf } \\
& r= \\
& 5 \\
& h= \\
& 10 \\
& \text { volume = } \\
& 785.3982 \\
& \text { area = } \\
& 471.2389 \\
& \text { >> }
\end{aligned}
$$

Commenting

- Comment lines start with a \%
- Not executed by Matlab, just for people reading the code
- Helps people understand what the code is doing and why!
- VERY IMPORTANT
- Good commenting is a huge help when maintaining/fixing/extending code

Header comments

- Every script file should have a header
- Indicates what the purpose of the file is

```
% ConvertTemp.m converts the freezing and boling points for
% water from degrees Celsius (c) to Farenheit (f)
% Author: Peter Bier
```

- Matlab incorporates this header as help

```
>> help ConvertTemp
ConvertTemp.m converts the freezing and boling points for
    water from degrees Celsius (c) to Farenheit (f)
    Author: Peter Bier
```

- No header = no lab mark

Other comments

- Comment anything that is not easy to understand
- Write USEFUL comments, compare the following:

```
% set x to zero
x = 0
% calculate y
y = x * 9/5 + 32
```

```
% Convert freezing point of water from
% celsius to farenheit
c = 0
f = c * 9/5 + 32
```

- No need to go overboard but...
- No comments = no lab mark

Basic user interaction: I/O

- Use input command to get input from user and store in a variable:
height = input('Enter the height:')

Matlab will display the message enclosed in quotes, wait for input and then store the entered value in the variable

Basic user interaction: I/O

- Use disp command to show something to a user

```
disp('The area of the rectangle is')
disp(area)
```

Matlab will display any message enclosed in quotes and the value of any variable

Optional Reading

Chapter 1 An Introduction to Matlab	Introduction to Matlab 7 for Engineers (2 ${ }^{\text {nd }}$ ed)		A Concise Introduction to Matlab (1 ${ }^{\text {st }}$ ed)	
Topic	Section	Pages	Section	Pages
Using Matlab as a calculator	1.1	6-17	1.1	2-13
Menus and the toolbar	1.2	17-19	1.2	13-15
Script Files	1.4	29-32	1.4	23-26
Input/Output	1.4	36-38	1.4	26-28
Help	1.5	38-43	1.5	28-31
Help			1.6	32

The Department of Engineering Science The University of Auckland

Chapter 2

1D Arrays, Problem Solving

Learning outcomes

- Explain what a 1D array is
- Create and manipulate 1D arrays
- Draw plots of 1D arrays
- Use 1D arrays in programs
- Outline the five steps for problem solving
- Use the five steps to solve a problem

MATLAB Arrays

- So far MATLAB variables hold a single value
- Can also create MATLAB arrays that hold multiple values
- Useful for storing lists of values (1D arrays) or tables of values (2D arrays)
- Can be used for dealing with vectors and matrices (Lecture 10)

Array Variables versus Scalars

- If a scalar variable (for a single value) is like a cardboard box, a 1D array variable is like a filing cabinet

$\left\{\begin{array}{l}\hline B(1)=3 \\ \hline B(2)=7 \\ \hline B(3)=2 \\ \hline B(4)=1 \\ \hline\end{array}\right.$

Creating 1D arrays

- Create a list of values by enclosing numbers within [] and separating by , or a space.

```
>> dailyHighs = [10, 11, 13, 12, 19, 18, 17]
dailyHighs =
10
>> dailyLows =[[[3 2 4 4
dailyLows =
3
```


Accessing Array Elements

- You can access/change a particular array element using ()

```
>> dailyHighs
dailyHighs =
10
>> dailyHigh$(2)
ans =
11
>> dailyHighs(2) = 14
dailyHighs =
10
```


Extending arrays

- You can add extra elements by
- creating them directly ()
- concatenating them [,]

```
>> dailyHighs
dailyHighs =
10
>> dailyHighs(8) = 12
dailyHighs =
10
>> dailyHighs = [dailyHighs, 14]
dailyHighs =
10
```


Default Array Elements

- If you don't assign array elements, MATLAB gives them a default value of 0

```
>> dailyHighs
dailyHighs =
10
>> dailyHighs(12) = 10
dailyHighs =
```


Using Arrays in Programming

- Main use for arrays in programming is data storage
- keeping track of the trajectory of a basketball
- storing the stress along a beam
- storing pressures inside the heart

Using Arrays in MATLAB

- MATLAB provides lots of special array functionality
- Using arrays and MATLAB functions allows repetitive calculations to be done quickly
- Also allows for compact programs.
- MATLAB originally written for use with arrays
- very good at dealing with arrays

Automatic 1D Arrays

- Ways to create 1D arrays automatically

This command creates a list of 7 points spaced evenly between 0 and 10

Array Slicing

- It is possible to access several elements of an array at once
- Instead of using a using a single value to index the array we can use another array

```
>> dailyHighs
dailyHighs =
10
>> dailyHighs([2,4,6])
dailyHighs =
14 12 18
```


Array Slicing

- The colon operator is handy when you want to pull out a sequence of values

```
>> dailyHighs
dailyHighs =
10
>> dailyHighs(3:5)
dailyHighs =
13 12 19
```


Array Arithmetic

- Arrays of the same length can be added or subtracted to each other.
- Arrays can also be multiplied by scalar constants.

```
>> dailyHighs = [10, 11, 13, 12, 19, 18, 17];
>> dailyLows = [ 3, 2, 4, 1, 5, 6, 4];
>> dailyRange = dailyHighs - dailyLows
dailyRange =
    7
>> dailyAverage = 0.5 * (dailyHighs + dailyLows)
dailyAverage =
\[
\begin{array}{lllllll}
6.5 & 6.5 & 8.5 & 6.5 & 12 & 12 & 10.5
\end{array}
\]
```


Array Arithmetic

- It is possible to multiply the elements in one array by the corresponding elements in another array.
- To do this we use the dot operator

```
>> heights = [9, 8, 4, 6];
>> widths = [3, 2, 1, 5];
>> areas = heights .* widths
areas
    18 16
    4 30
```


Array Arithmetic

- We can also do element by element division

```
>> heights = [9, 8, 4, 6];
>> widths = [3, 2 1,5];
>> ratios = heights ./ widths
ratios =
    344 1.2
```

- Similarly we can do element by element exponentiation

```
>> heights = [9, 8, 4, 6];
>> square = height(s.^2
square=
    81 64 16 36
```


Array Functions

- Standard mathematical functions (sin, cos, exp, log, etc) can apply to arrays as well as scalars
>> $x=[1,2,3] ;$
$\gg y=\sin (x) ;$
y is $[\sin (1), \sin (2), \sin (3)]$
- When writing functions (Lecture 3) remember input might be an array

Array Functions

Special Array Functions

- Some functions are specialised for use with 1D arrays
- length (array) gives the number of elements in array
- min (array) gives the minimum value in array
- max (array) gives the maximum value in array
- sum (array) gives the sum of values in array

5 Steps for Problem Solving

1. State the problem clearly
2. Describe the input and output information
3. Work the problem by hand (or with a calculator) for a simple set of data
4. Develop a solution and convert it to a computer program
5. Test the solution with a variety of data

Problem-Solving Worked Example

- We want to compute the distance between two points in a plane

$$
\mathrm{p}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \quad \mathrm{p}_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)
$$

Step 1: Problem Statement

- State the problem clearly

Compute the straight-line distance between two points in a plane.

Step 2: Input/Output Description

- Describe information given to solve problem
- Input
- Identify values to be computed
- Output
- I(nput)/O(utput) diagram

Step 3: Work the problem by hand

- Work problem by hand
- Use a calculator if necessary
- Very important step
- Don't skip even for simple problem
- If you cannot do this step
- read problem again
- consult reference material
- Diagrams can be useful

Step 3:

- Known solution, distance $=5$

$$
\begin{aligned}
\text { distance } & =\sqrt{\left(\text { side }_{1}\right)^{2}+\left(\text { side }_{2}\right)^{2}} \\
& =\sqrt{(6-2)^{2}+(4-1)^{2}} \\
& =\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25} \\
& =5
\end{aligned}
$$

Step 4: Develop a solution and convert it to a computer program

- Decompose problem into set of steps
- Simple problems give simple steps
- Give pseudocode/flowchart for code
- Complex problems give complex steps
- Give pseudocode/flowchart for functions
- Each complex step may require problem-solving process

Step 4:

- Pseudocode

1. Get x - and y-values for two points
2. Compute length of side of right angle triangle generated by points
3. Use hypotenuse calculation to get distance
4. Return the distance

Step 4:

```
* This script file computes the straight-line
* distance between two points in a plane.
* Input: (x1, %1) = coordinates of point 1
* (x2, y2) = coordinates of point 2
* Output: distance = distance between points
* Get x- and y-values for two points
disp('Enter coordinates for point 1:');
x1 = input('x-coordinate > '); % x-value for p1
y1 = input('y-coordinate > '); % #-value for p1
disp('Enter coordinates for point 2:');
x2 = input('x-coordinate > '); s x-value for p2
y2 = input ('y-coordinate > '); % #-value for p2
* Compute length of side of right angle triangle generated by points
side1 = x2 - x1; % Length of the x-side
side2 = y2 - y1; % Length of the y-side
* Use hypotenuse calculation to get distance
distance = sqrt(side1^2 + side2^2);
* Return the distance
disp('The distance is:'', distance
```


Step 5: Test the solution

- Test using hand example - Test with other data

Recommended Reading

Chapter 2 1D Arrays, Problem Solving	Introduction to Matlab 7 for Engineers (2 ed			
Topic	Section	A Concise Introduction to Matlab (1		
Arrays ed)				
Arrays	1.3	$19-20$	Section	Pages
Element by element operations	2.1	$70-81$	2.3	$16-17$
Problem Solving	2.3	$83-97$	2.3	$38-48$

Lab \#1 Preview

- Navigating MATLAB
- MATLAB help system
- Calculations and variables
- Script files
- Commenting
- Simple input and output commands

