#### The Department of Engineering Science The University of Auckland

#### Welcome to

#### **MATLAB Programming Course**

#### **Course Information**

• Jim Greenslade– Course Organiser and MATLAB Lecturer

Office 439.233 j.greenslade
@auckland.ac.nz

• Lab Tutors: PhD students from the Department of Engineering Science.

# **Course Components**

- 4 x 60 minute lectures
- Wednesday AND Thursday
  - 9:00-10:00
  - 1:00-2:00
- 4 x 90 minute labs
- Wednesday AND Thursday
  - 10:30-12 :00
  - 2:30-4:00



• MATLAB - Suggested texts:

"A Concise Introduction to Matlab"; or

"Introduction to MATLAB 7 for Engineers" William J Palm III

 Both books on "desk-copy" in the Engineering Library

#### Software

- MATLAB
  - Available from the Science Student Resource Centre
    - G16 ground level of the Maths Building 303
- Octave
  - "free software"
  - "mostly compatible with MATLAB"
  - Course staff can give no assistance or assurances <u>http://www.gnu.org/software/octave</u>

#### The Department of Engineering Science The University of Auckland

#### **Chapter 1**

#### An Introduction to MATLAB

# Learning outcomes

- Use Matlab as a calculator
- Create and use variables
- Write a script file
- Get input from the user and display output
- Understand the importance of commenting
- Write simple comments

# **Course Motivation**

- Computers are important tools for modern-day engineering.
- Computers allow engineers to perform time consuming tasks and solve problems quickly.
- Computers make visualisation of models possible.



Image: Pressure in an oil reservoir

# **Solving Equations**

• Solving simultaneous equations:

$$2x + y = 4$$
$$x - y = -1$$

• Can solve by hand to get x = 1, y = 2

## **Solving More Equations**

• Solving simultaneous equations:

$$2x + y + 2z = 4$$
$$x - y - z = -1$$
$$y - 2z = 4$$

• Can solve by hand to get x = 1.2, y = 2.8, z = -0.6

# **Solving Even More Equations**

• Solving simultaneous equations:

 $2x_1 - x_2 + 3x_4 - x_6 + 2x_7 + 3x_9 + x_{10} = 1$  $x_1 + x_3 + 3x_4 + 2x_5 + x_6 + 3x_9 - x_{10} = 2$  $3x_1 + 3x_2 - x_3 - x_4 + 2x_5 + 3x_6 - x_7 + 2x_8 + 3x_9 + x_{10} = 1$  $2x_1 + 3x_2 + 3x_3 + 2x_4 + x_5 + 2x_6 + x_7 + x_{10} = 3$  $3x_1 - x_2 - x_3 + 2x_5 - x_6 + x_7 + 3x_8 + x_9 + 2x_{10} = 2$  $x_1 \qquad -x_3 + x_4 + 2x_5 \qquad -x_7 + 3x_8 - x_9 + 2x_{10} = 3$  $x_1 + x_2 + x_4 - x_5 + x_6 + x_7 + 2x_8 + x_9 + 2x_{10} = 1$  $3x_1 + x_2 - x_3 + 3x_4 - x_5 + 3x_6 - x_{10} = 0$  $-x_1 + 2x_2 + x_3 + x_4 + 3x_5 - x_6 + x_8 - x_9 - x_{10} = -1$  $-x_1 + 2x_2 + 3x_4 - x_5 + 3x_6 + x_7 - x_8 - x_9 = 2$ 

• Can solve by hand...!?

# **Using MATLAB**

| 🗟 Ed         | litor - E:\docs                      | i\EngSci       | i\Teachin          | ng\ENG          | GEN131          | \2007\/         | MATLAB | Lecture | s and <u>La</u> | bs\W  |       |                                                               |
|--------------|--------------------------------------|----------------|--------------------|-----------------|-----------------|-----------------|--------|---------|-----------------|-------|-------|---------------------------------------------------------------|
| <u>F</u> ile | <u>E</u> dit <u>T</u> ext <u>G</u> o | <u>⊂</u> ell T | ools De <u>b</u> u | ug <u>D</u> esł | top <u>W</u> ir | ndow <u>H</u> e | lp     |         |                 |       | X 5 K |                                                               |
|              | ¥ 🖬   X 🖻                            | 🔒 🗠            | o ⊂⊨ [∰            | ) <b>/4</b>     | <b>+ +</b>      | f. 🗄            | * 🖷    | •       | 1               | В 💌   |       |                                                               |
| 0            | ⁺≣ ⊈≣ ∔≘                             | - 1.0          | + +                | 1.1             | ×               | x# x#           | 0      |         |                 |       |       |                                                               |
| 1 -          | clear;                               |                |                    |                 |                 |                 |        |         |                 |       |       |                                                               |
| 2 -          | A = [                                |                |                    |                 |                 |                 |        |         |                 |       |       |                                                               |
| 3            | 2                                    | -1             | 0                  | 3               | 0               | -1              | 2      | 0       | 3               | 1     |       |                                                               |
| 4            | 1                                    | 0              | 1                  | 3               | 2               | 1               | 0      | 0       | 3               | -1    |       |                                                               |
| 5            | 3                                    | 3              | -1                 | -1              | 2               | 3               | -1     | 2       | 3               | 1     |       | A Command Window                                              |
| р<br>2       | 3                                    | د<br>_1        | 3<br>_1            | 4               | 2               | _1              | 1      | U<br>3  | 1               | 1     |       | Command window                                                |
| 8            | 1                                    | <br>           | -1                 | 1               | 2               | -1              | -1     | 3       | -1              | 2     |       | <u>File E</u> dit De <u>b</u> ug <u>D</u> esktop <u>W</u> ind |
| 9            | - 1                                  | 1              | 0                  | 1               | -1              | 1               | 1      | 2       | 1               | 2     |       | 🚺 To get started, select MATLAB He                            |
| 10           | 3                                    | 1              | -1                 | 3               | -1              | з               | Ο      | ο       | ο               | -1    |       |                                                               |
| 11           | -1                                   | 2              | 1                  | 1               | 3               | -1              | 0      | 1       | -1              | -1    |       | >> equations                                                  |
| 12           | -1                                   | 2              | 0                  | 3               | -1              | 3               | 1      | -1      | -1              | 0     |       | >> cquacions                                                  |
| 13           | ];                                   |                |                    |                 |                 |                 |        |         |                 |       |       | x =                                                           |
| 14           |                                      |                |                    |                 |                 |                 |        |         |                 |       |       | ~                                                             |
| 15 -         | b = [                                |                |                    |                 |                 |                 |        |         |                 |       |       | -0.1607                                                       |
| 10           | 1                                    |                |                    |                 |                 |                 |        |         |                 |       |       | -0.9621                                                       |
| 18           | 1                                    |                |                    |                 |                 |                 |        |         |                 |       |       | 0.4346                                                        |
| 19           | 3                                    |                |                    |                 |                 |                 |        |         |                 |       |       | 0.2301                                                        |
| 20           | 2                                    |                |                    |                 |                 |                 |        |         |                 |       |       | 0.8881                                                        |
| 21           | 3                                    |                |                    |                 |                 |                 |        |         |                 |       |       | 1 1170                                                        |
| 22           | 1                                    |                |                    |                 |                 |                 |        |         |                 |       |       | 0.0475                                                        |
| 23           | 0                                    |                |                    |                 |                 |                 |        |         |                 |       |       | -0.3688                                                       |
| 24           | -1                                   |                |                    |                 |                 |                 |        |         |                 |       |       | -0.1944                                                       |
| 25           | 2                                    |                |                    |                 |                 |                 |        |         |                 |       |       | 1 2742                                                        |
| 20           | 1;                                   |                |                    |                 |                 |                 |        |         |                 |       |       | 1.2 (12                                                       |
| 28 -         | x = A \                              | h              |                    |                 |                 |                 |        |         |                 |       | _     |                                                               |
|              |                                      | -              |                    |                 |                 |                 |        |         |                 |       |       | · ·                                                           |
|              |                                      |                |                    |                 | scrip           | t               |        |         | Ln 2            | Col 1 | OVR   |                                                               |

# **Solving Equations**

 Often need to solve systems with 10,000 or 100,000 equations

– Can be done very quickly using a computer

- This is common in engineering
  - Operations research
  - Mechanics and dynamics
  - Electrical circuits

#### MATLAB

#### • MATLAB = MATrix LABoratory

- Extremely useful mathematical software

   Can be used as an advanced calculator/graphing tool
  - Can be used as a programming language

# Why use MATLAB?

- MATLAB is an easy introduction language for programming.
- MATLAB provides a "quick-and-easy" development environment.
- MATLAB is very useful in many engineering contexts.
- MATLAB is used in industry.

# **Programming with MATLAB**

- Programming is a TRANSFERABLE SKILL
  - Programming concepts are common for all languages
  - Syntax may change, but usually similar
- MATLAB is PLATFORM INDEPENDENT – Can write software once for many OS
- MATLAB can be linked to other software – C/C++, Java, Fortran

# **MATLAB in Your Degree**

- MATHEMATICAL MODELLING 2 and 3
  - You will need to use MATLAB to solve applied mathematical models.
- Other courses
  - structural analysis
  - electrical circuits
  - systems and control
- Plotting results, checking long calculations, etc.

## MATLAB is a Marketable Skill

"Job Description: Create and maintain steady-state and dynamic thermodynamic system models from conceptual design through the complete design/development process (using industry tools such as MATLAB, Simulink, Altia, etc.). Will also support the design, development, and testing of hardware components and/or subsystems."

from http://www.andrews-space.com/en/employment/career\_ops\_midlevel\_eng\_II.htm

## **Calculations in MATLAB**

- MATLAB can be used in a wide range of ways to help you solve engineering problems.
- We will begin by using MATLAB as an advanced calculator:
  - To express mathematics in a form suitable for MATLAB.
  - To use built-in mathematical functions in calculations.
  - To use variables in calculations.

#### **MATLAB** as a Calculator

 You can enter expressions at the command line and evaluate them right away.



The >> symbols indicate where commands are typed.

#### **Mathematical Operators**

| Operator       | MATLAB | Algebra       |  |  |  |
|----------------|--------|---------------|--|--|--|
| +              | +      | 5 + 4 = 9     |  |  |  |
| _              | _      | 5 - 4 = 1     |  |  |  |
| ×              | *      | 5 * 4 = 20    |  |  |  |
| ÷              | /      | 5 / 4 = 1.25  |  |  |  |
| a <sup>b</sup> | a^b    | $5^{4} = 625$ |  |  |  |

#### BEDMAS

| B = Brackets       |
|--------------------|
| E = Exponentials   |
| D = Division       |
| M = Multiplication |
| A = Addition       |
| S = Subtraction    |
|                    |

Be careful using brackets – check that opening and closing brackets are matched up correctly.

## **Built-In Functions**

• Like a calculator, MATLAB has many built-in mathematical functions.



## **MATLAB Help**

• Find out more about functions using MATLAB's help

>> help - gives command line help
>> doc - gives GUI help



#### Variables

 We use variables so calculations are easily represented.

$$C = (F - 32) \times \frac{5}{9}$$
$$F = 100 \Longrightarrow C = 37.8$$
$$F = 32 \Longrightarrow C = 0$$

• You can think of variables as *named locations in the computer memory in which a number can be stored.* 

#### **MATLAB Variables**

# Memory as a Filing System

- You can think of computer memory as a large set of "boxes" in which numbers can be stored.
- The values can be inspected and changed.



Boxes can be labelled with a variable name.

# **Assigning Variables**

- Either 1) Creates the variable Created in MATLAB Workspace
- Or 2) Changes the variable value
- Always left-to right
   > a = expression
   calculation
   etc

#### **Special Variables**

- MATLAB has some special variables:
   ans is the result of the last calculation
  - -pi represents  $\pi$
  - Inf represents infinity
  - NaN stands for not-a-number and occurs when an expression is undefined e.g. division by zero
  - i, j represent the square root of -1 (necessary for complex numbers)

# **Calculations with Variables**

- Suppose we want to calculate the volume of a cylinder.
- It's radius and height are stored as variables in memory.

>> volume = pi\*radius^2\*height



# **Script Files**

- You can save a sequence of commands for reuse later
- Each line is the same as typing a command in the command window
- Save the file as filename.m

| ٤,           | Editor - E:\docs\EngSci\Teaching\ENGGEN131\2007\MATLAB Lectures and Labs\Wee                                                  | c 1\vol_surf.m |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|----------------|
| <u>F</u> ile | e <u>E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp |                |
| Ľ            | 🗃 🔚   🐰 🖻 🛍 🗠 🖙   🚭   🏘 🌪 <table-cell-rows> 🗲   🚭 🗶   🗐 衛 🗊 🏥 🏭   Base</table-cell-rows>                                      |                |
| 1            | *∰ Ļ∰   − 1.0 +   ÷ 1.1 ×   ‰ ‰ ↓ 0                                                                                           |                |
| 1            | - r <mark>=</mark> 5                                                                                                          |                |
| 2            | - h <mark>=</mark> 10                                                                                                         |                |
| 3            | - volume 🚍 pi * r^2 * h                                                                                                       |                |
| 4            | – area 🚍 2 * pi * r * h + 2 * pi * r^2                                                                                        |                |

# **Script Files**

 Run sequence of commands by typing

filename

in the command window

```
>> vol surf
r
  =
      5
h
  =
      10
volume =
      785.3982
area
      =
      471.2389
>>
```

# Commenting

- Comment lines start with a %
- Not executed by Matlab, just for people reading the code
- Helps people understand what the code is doing and why!
- VERY IMPORTANT
- Good commenting is a huge help when maintaining/fixing/extending code

#### **Header comments**

- Every script file should have a header
- Indicates what the purpose of the file is

% ConvertTemp.m converts the freezing and boling points for % water from degrees Celsius (c) to Farenheit (f) % Author: Peter Bier

#### Matlab incorporates this header as help

>> help ConvertTemp

ConvertTemp.m converts the freezing and boling points for water from degrees Celsius (c) to Farenheit (f) Author: Peter Bier

• No header = no lab mark

### **Other comments**

- Comment anything that is not easy to understand
- Write USEFUL comments, compare the following:

```
% set x to zero
x = 0
% calculate y
y = x * 9/5 + 32
```

% Convert freezing point of water from % celsius to farenheit c = 0 f = c \* 9/5 + 32

- No need to go overboard but...
- No comments = no lab mark

## **Basic user interaction: I/O**

• Use input command to get input from user and store in a variable:

height = input('Enter the height:')

Matlab will display the message enclosed in quotes, wait for input and then store the entered value in the variable

## **Basic user interaction: I/O**

 Use disp command to show something to a user

disp('The area of the rectangle is')
disp(area)

Matlab will display any message enclosed in quotes and the value of any variable

# **Optional Reading**

| <b>Chapter 1</b><br>An Introduction to Matlab | Introduction to Mat<br>ed) | lab 7 for Engineers (2 <sup>nd</sup> | A Concise Introduction to Matlab (1 <sup>st</sup> ed) |       |
|-----------------------------------------------|----------------------------|--------------------------------------|-------------------------------------------------------|-------|
| Торіс                                         | Section                    | Pages                                | Section                                               | Pages |
| Using Matlab as a calculator                  | 1.1                        | 6-17                                 | 1.1                                                   | 2-13  |
| Menus and the toolbar                         | 1.2                        | 17-19                                | 1.2                                                   | 13-15 |
| Script Files                                  | 1.4                        | 29-32                                | 1.4                                                   | 23-26 |
| Input/Output                                  | 1.4                        | 36-38                                | 1.4                                                   | 26-28 |
| Help                                          | 1.5                        | 38-43                                | 1.5                                                   | 28-31 |
| Help                                          |                            |                                      | 1.6                                                   | 32    |

#### The Department of Engineering Science The University of Auckland

#### **Chapter 2**

#### 1D Arrays, Problem Solving

# Learning outcomes

- Explain what a 1D array is
- Create and manipulate 1D arrays
- Draw plots of 1D arrays
- Use 1D arrays in programs
- Outline the five steps for problem solving
- Use the five steps to solve a problem

# **MATLAB** Arrays

- So far MATLAB variables hold a <u>single</u> value
- Can also create MATLAB arrays that hold <u>multiple values</u>
- Useful for storing lists of values (1D arrays) or tables of values (2D arrays)
- Can be used for dealing with vectors and matrices (Lecture 10)

## **Array Variables versus Scalars**

 If a scalar variable (for a single value) is like a *cardboard box*, a 1D array variable is like a *filing cabinet*



# **Creating 1D arrays**

 Create a list of values by enclosing numbers within [] and separating by , or a space.

```
>> dailyHighs = [10, 11, 13, 12, 19, 18, 17]
dailyHighs =
10 11 13 12 19 18 17
>> dailyLows = [3 2 4 1 5 6 4]
dailyLows =
3 2 4 1 5 6 4
```

## **Accessing Array Elements**

• You can access/change a particular array element using ()

```
>> dailyHighs
dailyHighs =
10 11 13 12 19 18 17
>> dailyHighs(2)
ans =
11
>> dailyHighs(2) = 14
dailyHighs =
10 14 13 12 19 18 17
```

## **Extending arrays**

- You can add extra elements by
  - creating them directly ()
  - concatenating them [ , ]



## **Default Array Elements**

 If you don't assign array elements, MATLAB gives them a default value of 0



# **Using Arrays in Programming**

- Main use for arrays in programming is data storage
  - keeping track of the trajectory of a basketball
  - storing the stress along a beam
  - storing pressures inside the heart

# **Using Arrays in MATLAB**

- MATLAB provides lots of special array functionality
- Using arrays and MATLAB functions allows repetitive calculations to be done quickly
- Also allows for compact programs.
- MATLAB originally written for use with arrays
  - very good at dealing with arrays

#### **Automatic 1D Arrays**

Ways to create 1D arrays automatically



This command creates a list of 7 points spaced evenly between 0 and 10

# **Array Slicing**

- It is possible to access several elements of an array at once
- Instead of using a using a single value to index the array we can use another array

```
>> dailyHighs
dailyHighs =
10 14 13 12 19 18 17 12 14 0 0 10
>> dailyHighs([2,4,6])
dailyHighs =
14 12 18
```

# **Array Slicing**

• The colon operator is handy when you want to pull out a sequence of values

```
>> dailyHighs
dailyHighs =
10 14 13 12 19 18 17 12 14 0 0 10
>> dailyHighs(3:5)
dailyHighs =
13 12 19
```

## **Array Arithmetic**

- Arrays of the same length can be added or subtracted to each other.
- Arrays can also be multiplied by scalar constants.

```
>> dailyHighs = [10, 11, 13, 12, 19, 18, 17];
>> dailyLows = [ 3, 2, 4, 1, 5, 6, 4];
>> dailyRange = dailyHighs - dailyLows
dailyRange =
            7 9 9 11 14 12 13
>> dailyAverage = 0.5 * (dailyHighs + dailyLows)
dailyAverage =
            6.5 6.5 8.5 6.5 12 12 10.5
```

## **Array Arithmetic**

- It is possible to multiply the elements in one array by the corresponding elements in another array.
- To do this we use the dot operator

# **Array Arithmetic**

• We can also do element by element division

Similarly we can do element by element exponentiation

## **Array Functions**

 Standard mathematical functions (sin, cos, exp, log, etc) can apply to arrays as well as scalars

y is [sin(1), sin(2), sin(3)]

 When writing functions (Lecture 3) remember input might be an array

#### **Array Functions**



# **Special Array Functions**

- Some functions are specialised for use with 1D arrays
  - length(array) gives the number of
     elements in array
  - -min(array) gives the minimum value
    in array
  - max(array) gives the maximum value
    in array
  - sum(array) gives the sum of values
    in array

# **5 Steps for Problem Solving**

- 1. State the problem clearly
- 2. Describe the input and output information
- 3. Work the problem by hand (or with a calculator) for a simple set of data
- 4. Develop a solution and convert it to a computer program
- 5. Test the solution with a variety of data

#### Problem-Solving Worked Example

• We want to compute the distance between two points in a plane

$$p_1 = (x_1, y_1)$$
  $p_2 = (x_2, y_2)$ 

## **Step 1: Problem Statement**

• State the problem clearly

# Compute the straight-line distance between two points in a plane.

# **Step 2: Input/Output Description**

- Describe information given to solve problem
  - Input
- Identify values to be computed
   Output
- I(nput)/O(utput) diagram



# Step 3: Work the problem by hand

- Work problem by hand
   Use a calculator if necessary
- Very important step
  - Don't skip even for simple problem
  - If you cannot do this step
    - read problem again
    - consult reference material
- Diagrams can be useful

## Step 3:

• Known solution, distance = 5



# Step 4: Develop a solution and convert it to a computer program

- Decompose problem into set of steps
  - Simple problems give simple steps
    - Give pseudocode/flowchart for code
  - Complex problems give complex steps
    - Give pseudocode/flowchart for functions
    - Each complex step may require problem-solving process

# Step 4:

- Pseudocode
  - 1. Get x- and y-values for two points
  - 2. Compute length of side of right angle triangle generated by points
  - 3. Use hypotenuse calculation to get distance
  - 4. Return the distance

#### Step 4:

```
% This script file computes the straight-line
% distance between two points in a plane.
% Input: (x1, y1) = coordinates of point 1
% (x2, y2) = coordinates of point 2
% Output: distance = distance between points
```

```
% Get x- and y-values for two points
disp('Enter coordinates for point 1:');
x1 = input('x-coordinate > '); % x-value for p1
y1 = input('y-coordinate > '); % y-value for p1
```

```
disp('Enter coordinates for point 2:');
x2 = input('x-coordinate > '); % x-value for p2
y2 = input('y-coordinate > '); % y-value for p2
```

```
% Compute length of side of right angle triangle generated by points side1 = x2 - x1; % Length of the x-side side2 = y2 - y1; % Length of the y-side
```

```
% Use hypotenuse calculation to get distance
distance = sqrt(side1^2 + side2^2);
```

```
% Return the distance
disp('The distance is:'), distance
```

# **Step 5: Test the solution**

Test using hand exampleTest with other data

```
>> getdist
Enter coordinates for point 1:
x-coordinate > 2
y-coordinate > 1
Enter coordinates for point 2:
x-coordinate > 6
y-coordinate > 4
The distance is:
```

distance =



>>



# **Recommended Reading**

| <b>Chapter 2</b><br>1D Arrays, Problem Solving | Introduction to Matl<br>ed) | ab 7 for Engineers (2 <sup>nd</sup> | A Concise Introduction to Matlab (1 <sup>st</sup> ed) |       |
|------------------------------------------------|-----------------------------|-------------------------------------|-------------------------------------------------------|-------|
| Торіс                                          | Section                     | Pages                               | Section                                               | Pages |
| Arrays                                         | 1.3                         | 19-20                               | 1.3                                                   | 16-17 |
| Arrays                                         | 2.1                         | 70-81                               | 2.1                                                   | 38-48 |
| Element by element operations                  | 2.3                         | 83-97                               | 2.3                                                   | 49-57 |
| Problem Solving                                | 1.7                         | 52-60                               |                                                       |       |

# Lab #1 Preview

- Navigating MATLAB
- MATLAB help system
- Calculations and variables
- Script files
- Commenting
- Simple input and output commands