
The Department of Engineering Science

The University of Auckland

Welcome to

MATLAB Programming Course

Course Information

• Jim Greenslade– Course Organiser and
MATLAB Lecturer

– Office 439.233 j.greenslade
@auckland.ac.nz

• Lab Tutors: PhD students from the
Department of Engineering Science.

Course Components

• 4 x 60 minute lectures

• Wednesday AND Thursday
– 9:00-10:00

– 1:00-2:00

• 4 x 90 minute labs

• Wednesday AND Thursday
– 10:30-12 :00

– 2:30-4:00

Text Books

• MATLAB - Suggested texts:

“A Concise Introduction to Matlab”; or

“Introduction to MATLAB 7 for Engineers”

William J Palm III

• Both books on “desk-copy” in the
Engineering Library

Software

• MATLAB
– Available from the Science Student Resource Centre

• G16 ground level of the Maths Building 303

• Octave
– “free software”

– “mostly compatible with MATLAB”

– Course staff can give no assistance or assurances

http://www.gnu.org/software/octave

http://www.gnu.org/software/octave

The Department of Engineering Science

The University of Auckland

Chapter 1

An Introduction to MATLAB

Learning outcomes

• Use Matlab as a calculator

• Create and use variables

• Write a script file

• Get input from the user and display
output

• Understand the importance of
commenting

• Write simple comments

Course Motivation

• Computers are important tools for modern-day
engineering.

• Computers allow engineers to perform time
consuming tasks and solve problems quickly.

• Computers
make
visualisation
of models
possible.

Image: Pressure in an oil reservoir

Solving Equations

• Solving simultaneous equations:

• Can solve by hand to get

1

42





yx

yx

2,1  yx

Solving More Equations

• Solving simultaneous equations:

• Can solve by hand to get

42

1

422







zy

zyx

zyx

6.0,8.2,2.1  zyx

Solving Even More Equations

• Solving simultaneous equations:

• Can solve by hand…!?

2332

132

0333

122

3232

22323

322332

1323233

2323

13232

98765421

1098654321

10654321

1098765421

109875431

1098765321

107654321

10987654321

10965431

10976421





















xxxxxxxx

xxxxxxxxx

xxxxxxx

xxxxxxxxx

xxxxxxxx

xxxxxxxxx

xxxxxxxx

xxxxxxxxxx

xxxxxxx

xxxxxxx

Using MATLAB

Solving Equations

• Often need to solve systems with 10,000
or 100,000 equations

– Can be done very quickly using a computer

• This is common in engineering

– Operations research

– Mechanics and dynamics

– Electrical circuits

MATLAB

• MATLAB = MATrix LABoratory

• Extremely useful mathematical software

– Can be used as an advanced
calculator/graphing tool

– Can be used as a programming language

Why use MATLAB?

• MATLAB is an easy introduction language for
programming.

• MATLAB provides a “quick-and-easy”
development environment.

• MATLAB is very useful in many engineering
contexts.

• MATLAB is used in industry.

Programming with MATLAB

• Programming is a TRANSFERABLE SKILL
– Programming concepts are common for all

languages

– Syntax may change, but usually similar

• MATLAB is PLATFORM INDEPENDENT
– Can write software once for many OS

• MATLAB can be linked to other software
– C/C++, Java, Fortran

MATLAB in Your Degree

• MATHEMATICAL MODELLING 2 and 3

– You will need to use MATLAB to solve
applied mathematical models.

• Other courses

– structural analysis

– electrical circuits

– systems and control

• Plotting results, checking long
calculations, etc.

MATLAB is a Marketable Skill

“Job Description: Create and
maintain steady-state and dynamic
thermodynamic system models from
conceptual design through the
complete design/development
process (using industry tools such as
MATLAB, Simulink, Altia, etc.). Will
also support the design,
development, and testing of
hardware components and/or
subsystems.”
from http://www.andrews-space.com/en/employment/career_ops_midlevel_eng_II.htm

Calculations in MATLAB

• MATLAB can be used in a wide range of ways
to help you solve engineering problems.

• We will begin by using MATLAB as an
advanced calculator:
– To express mathematics in a form suitable for

MATLAB.

– To use built-in mathematical functions in
calculations.

– To use variables in calculations.

MATLAB as a Calculator

• You can enter expressions at the
command line and evaluate them right
away.

The >> symbols indicate where commands are typed.

previous

command

next

command

>> 3 + 5 * 8

ans =

 43

>>

Mathematical Operators

Operator MATLAB Algebra

 + 5 + 4 = 9

 - 5 - 4 = 1

 * 5 * 4 = 20

 / 5 / 4 = 1.25

ab a^b 5^4 = 625

BEDMAS

B = Brackets

E = Exponentials

D = Division

M = Multiplication

A = Addition

S = Subtraction

Be careful using brackets – check that opening

and closing brackets are matched up correctly.

>> 3*4 + 2

ans =

 14

>> 3*(4+2)

ans =

 18

Built-In Functions

• Like a calculator, MATLAB has many built-in
mathematical functions.

>> sqrt(4)

ans =

 2

>> abs(-3)

ans =

 3

MATLAB Help

• Find out more about functions using
MATLAB’s help
>> help – gives command line help

>> doc – gives GUI help

Variables

• We use variables so calculations are easily
represented.

• You can think of variables as named locations
in the computer memory in which a number
can be stored.

032

8.37100

9

5
)32(







CF

CF

FC

MATLAB Variables

>> F = 100

F =

 100

>> C = (F-32)*5/9

C =

 37.7778

>> F = 32

 F = 32

>> C = (F-32)*5/9

C =

 0

Memory as a Filing System

• You can think of computer memory as a
large set of “boxes” in which numbers
can be stored.

• The values can be inspected and
changed.

• Boxes can be labelled with a variable
name.

>> A = 3

A =

 3

3

A

Assigning Variables

• Either 1) Creates the variable

– Created in MATLAB Workspace

• Or 2) Changes the variable value

• Always left-to right

>> a = expression

 calculation

 etc

>> a = 2

a =

 2

>> 3 = a

??? 3 = a

 |

Error: …

>> b = a

b =

 2

Special Variables

• MATLAB has some special variables:
– ans is the result of the last calculation

– pi represents p

– Inf represents infinity

– NaN stands for not-a-number and occurs

when an expression is undefined e.g.
division by zero

– i, j represent the square root of –1

(necessary for complex numbers)

Calculations with Variables

• Suppose we want to calculate the
volume of a cylinder.

• It’s radius and height are stored as
variables in memory.

 >> volume = pi*radius^2*height

 volume radius height

Script Files

• You can save a sequence of commands for
reuse later

• Each line is the same as typing a command in
the command window

• Save the file as filename.m

Script Files

• Run sequence
of commands
by typing

 filename

 in the command
window

>> vol_surf

r =

 5

h =

 10

volume =

 785.3982

area =

 471.2389

>>

Commenting

• Comment lines start with a %

• Not executed by Matlab, just for people
reading the code

• Helps people understand what the code
is doing and why!

• VERY IMPORTANT

• Good commenting is a huge help when
maintaining/fixing/extending code

Header comments

• Every script file should have a header

• Indicates what the purpose of the file is

• Matlab incorporates this header as help

• No header = no lab mark

% ConvertTemp.m converts the freezing and boling points for

% water from degrees Celsius (c) to Farenheit (f)

% Author: Peter Bier

>> help ConvertTemp

ConvertTemp.m converts the freezing and boling points for

 water from degrees Celsius (c) to Farenheit (f)

 Author: Peter Bier

Other comments

• Comment anything that is not easy to
understand

• Write USEFUL comments, compare the
following:

• No need to go overboard but…

• No comments = no lab mark

% set x to zero

x = 0

% calculate y

y = x * 9/5 + 32

% Convert freezing point of water from

% celsius to farenheit

c = 0

f = c * 9/5 + 32

Basic user interaction: I/O

• Use input command to get input from
user and store in a variable:

Matlab will display the message enclosed
in quotes, wait for input and then store
the entered value in the variable

height = input('Enter the height:')

Basic user interaction: I/O

• Use disp command to show something
to a user

Matlab will display any message enclosed
in quotes and the value of any variable

disp('The area of the rectangle is')

disp(area)

Optional Reading

Chapter 1

An Introduction to Matlab

Introduction to Matlab 7 for Engineers (2nd

ed)

A Concise Introduction to Matlab (1st ed)

Topic Section Pages Section Pages

Using Matlab as a calculator 1.1 6-17 1.1 2-13

Menus and the toolbar 1.2 17-19 1.2 13-15

Script Files 1.4 29-32 1.4 23-26

Input/Output 1.4 36-38 1.4 26-28

Help 1.5 38-43 1.5 28-31

Help 1.6 32

The Department of Engineering Science

The University of Auckland

Chapter 2

1D Arrays, Problem Solving

Learning outcomes

• Explain what a 1D array is

• Create and manipulate 1D arrays

• Draw plots of 1D arrays

• Use 1D arrays in programs

• Outline the five steps for problem
solving

• Use the five steps to solve a problem

MATLAB Arrays

• So far MATLAB variables hold a single
value

• Can also create MATLAB arrays that hold
multiple values

• Useful for storing lists of values (1D
arrays) or tables of values (2D arrays)

• Can be used for dealing with vectors and
matrices (Lecture 10)

Array Variables versus Scalars

• If a scalar variable (for a single value) is
like a cardboard box, a 1D array variable
is like a filing cabinet

>> B=[3, 7, 2, 1]

B =

 3 7 2 1

B

B(1) = 3

B(2) = 7

B(3) = 2

B(4) = 1

Creating 1D arrays

• Create a list of values by enclosing
numbers within [] and separating by ,

or a space.

Accessing Array Elements

• You can access/change a particular array
element using ()

Extending arrays

• You can add extra elements by
– creating them directly ()

– concatenating them [,]

Default Array Elements

• If you don’t assign array elements,
MATLAB gives them a default value of 0

Using Arrays in Programming

• Main use for arrays in programming is
data storage

– keeping track of the trajectory of a
basketball

– storing the stress along a beam

– storing pressures inside the heart

Using Arrays in MATLAB

• MATLAB provides lots of special array
functionality

• Using arrays and MATLAB functions
allows repetitive calculations to be
done quickly

• Also allows for compact programs.
• MATLAB originally written for use with

arrays
• very good at dealing with arrays

Automatic 1D Arrays

• Ways to create 1D arrays automatically

>> x = 0:10

x =

 0 1 2 3 4 5 6 7 8 9 10

>> t = linspace(0,10,7)

t =

 0 1.6667 3.3333 5.0000 6.6667 8.3333 10.0000

>>

This command creates a list of 7 points

spaced evenly between 0 and 10

Array Slicing

• It is possible to access several elements
of an array at once

• Instead of using a using a single value to
index the array we can use another
array

Array Slicing

• The colon operator is handy when you
want to pull out a sequence of values

Array Arithmetic

• Arrays of the same length can be added
or subtracted to each other.

• Arrays can also be multiplied by scalar
constants.

Array Arithmetic

• It is possible to multiply the elements in
one array by the corresponding elements
in another array.

• To do this we use the dot operator

27

Array Arithmetic

• We can also do element by element
division

• Similarly we can do element by element
exponentiation

Array Functions

• Standard mathematical functions (sin,
cos, exp, log, etc) can apply to arrays as
well as scalars

 >> x = [1, 2, 3];

 >> y = sin(x);

 y is [sin(1), sin(2), sin(3)]

– When writing functions (Lecture 3)
remember input might be an array

Array Functions

>> x = linspace(0, 2*pi,9)

x =

 0 0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978 6.2832

>> y = sin(x)

y =

 0 0.7071 1.0000 0.7071 0.0000 -0.7071 -1.0000 -0.7071

0.0000

>> plot(x,y)

x = linspace(0, 2*pi,21)

Special Array Functions

• Some functions are specialised for use
with 1D arrays
– length(array) gives the number of

elements in array

– min(array) gives the minimum value

 in array

– max(array) gives the maximum value

 in array

– sum(array) gives the sum of values

 in array

5 Steps for Problem Solving

1. State the problem clearly

2. Describe the input and output
information

3. Work the problem by hand (or with a
calculator) for a simple set of data

4. Develop a solution and convert it to a
computer program

5. Test the solution with a variety of data

Problem-Solving Worked

Example

• We want to compute the distance
between two points in a plane

p1 = (x1, y1)

p2 = (x2, y2)

Step 1: Problem Statement

• State the problem clearly

Compute the straight-line distance
between two points in a plane.

Step 2: Input/Output Description

• Describe information given to solve
problem

– Input

• Identify values to be computed

– Output

• I(nput)/O(utput) diagram

Point 1

Point 2
Distance between points

Step 3: Work the problem by

hand

• Work problem by hand

– Use a calculator if necessary

• Very important step

– Don’t skip even for simple problem

– If you cannot do this step

• read problem again

• consult reference material

• Diagrams can be useful

p2 = (6, 4)

Step 3:

• Known solution, distance = 5

p1 = (2, 1)

5

2591634

)14()26(

)(side)side(distance

22

22

2

2

2

1









Step 4: Develop a solution and

convert it to a computer program

• Decompose problem into set of steps

– Simple problems give simple steps

• Give pseudocode/flowchart for code

– Complex problems give complex steps

• Give pseudocode/flowchart for functions

• Each complex step may require problem-solving
process

Step 4:

• Pseudocode

1. Get x- and y-values for two points

2. Compute length of side of right angle
triangle generated by points

3. Use hypotenuse calculation to get distance

4. Return the distance

Step 4:

Step 5: Test the solution

• Test using hand example

• Test with other data

p2 = (1, 1)

p1 = (0, 0)

2

Recommended Reading

Chapter 2

1D Arrays, Problem Solving

Introduction to Matlab 7 for Engineers (2nd

ed)

A Concise Introduction to Matlab (1st ed)

Topic Section Pages Section Pages

Arrays 1.3 19-20 1.3 16-17

Arrays 2.1 70-81 2.1 38-48

Element by element operations 2.3 83-97 2.3 49-57

Problem Solving 1.7 52-60

Lab #1 Preview

• Navigating MATLAB

• MATLAB help system

• Calculations and variables

• Script files

• Commenting

• Simple input and output commands

