Circuit Theory Chapter 7 First-Order Circuits

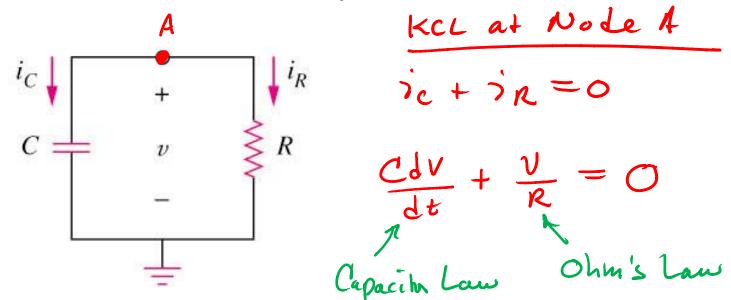
see "Derivation" link for more information

First-Order Circuits Chapter 7 "Natural Response"

- 7.1 The Source-Free RC Circuit
- 7.2 The Source-Free RL Circuit
- 7.3 Unit-step Function
- 7.4 Step Response of an RC Circuit
- 7.5 Step Response of an RL Circuit

7.1 The Source-Free RC Circuit (1)

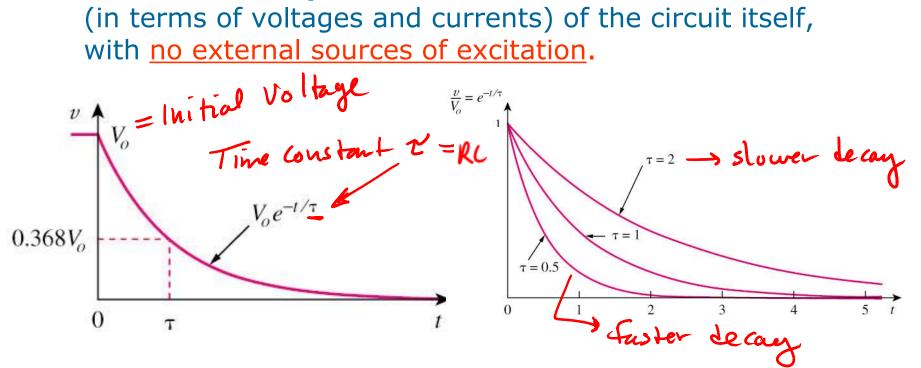
• A **first-order circuit** is characterized by a firstorder differential equation.



- Apply Kirchhoff's laws to <u>purely resistive circuit</u> results in <u>algebraic equations</u>.
- Apply the laws to RC and RL circuits produces <u>differential</u> <u>equations</u>.

7.1 The Source-Free RC Circuit (2)

• The **natural response** of a circuit refers to the behavior (in terms of voltages and currents) of the circuit itself, with no external sources of excitation.



- The **time constant** τ of a circuit is the time required for the response to decay by a factor of $\frac{1/e \text{ or } 36.8\%}{1/e \text{ or } 36.8\%}$ of its initial value.
- v decays faster for small τ and slower for large τ .

7.1 The Source-Free RC Circuit (3)

The key to working with a source-free RC circuit is finding: $v(t) = V_0 e^{-t/\tau}$ where $\tau = RC$

- 1. The initial voltage $v(0) = V_0$ across the capacitor.
- 2. The time constant $\tau = RC$.

7.1 Source-Free RC Circuit (4) Example 1

Refer to the circuit below, determine v_{C} , v_{x} , and i_0 for $t \ge 0$. 8Ω Assume that $v_c(0) = 30 \text{ V} = V_0$ $\mathcal{T} = R_{ab} C = (8 + 12/6)(\frac{1}{3}) 12 \Omega \leq \int 6 \Omega \leq v_r$ $\frac{1}{3}$ F = $=(8+4)(\frac{1}{3})=45$ seconds $V_{c}(t) = V_{e}e^{-t/t} = 30e^{-0.25t}$ Vx divider Vc $V_{x} = \left(\frac{12/16}{12/16+8}\right) V_{c} = \frac{4}{12} V_{c} = \frac{1}{3} v_{c} = 10 e^{-.25t}$ $V_{x} = \left(\frac{12/16}{12/16+8}\right) V_{c} = \frac{4}{12} V_{c} = \frac{1}{3} v_{c} = 10 e^{-.25t}$ $V_{x} = \left(\frac{12}{12}\right) V_{c} = \frac{4}{12} V_{c} = \frac{1}{3} v_{c} = 10 e^{-.25t}$ $V_{x} = \left(\frac{12}{12}\right) V_{c} = \frac{4}{12} V_{c} = \frac{1}{3} v_{c} = 10 e^{-.25t}$ $V_{x} = \left(\frac{12}{12}\right) V_{c} = \frac{4}{12} V_{c} = \frac{1}{3} v_{c} = 10 e^{-.25t}$ $V_{x} = \left(\frac{12}{12}\right) V_{c} = \frac{4}{12} V_{c} = \frac{1}{3} v_{c} = 10 e^{-.25t}$ $V_{x} = \left(\frac{12}{12}\right) V_{c} = \frac{4}{12} V_{c} = \frac{1}{3} v_{c} = 10 e^{-.25t}$ $V_{x} = \left(\frac{12}{12}\right) V_{c} = \frac{4}{12} V_{c} = \frac{1}{3} v_{c} = 10 e^{-.25t}$ <u>Answer</u>: $v_c = 30e^{-0.25t} V$; $v_x = 10e^{-0.25t}$; $i_o = -2.5e^{-0.25t} A$

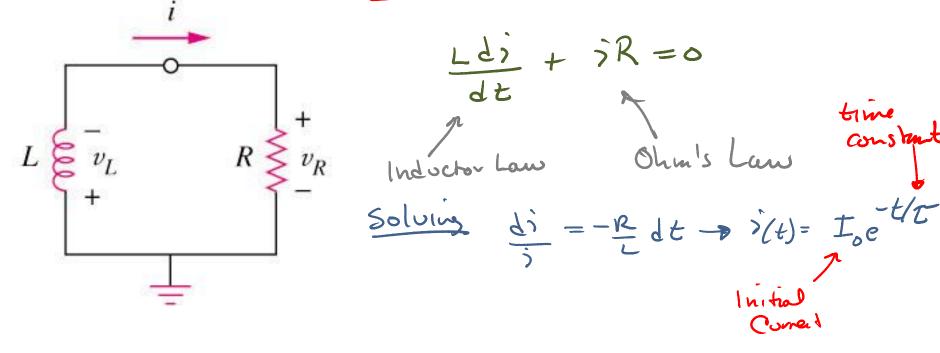
7.1 Source-Free RC Circuit (5) Example 2

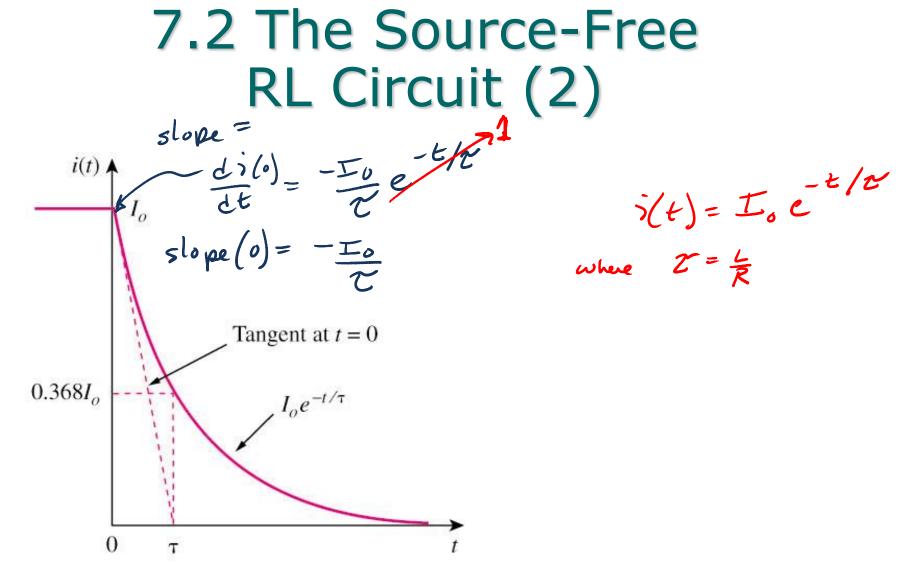
The switch in circuit below is opened at t = 0, t = 0find v(t) for $t \ge 0$. 6Ω PLAN A) Find Vo, Volhage across $\frac{1}{6}$ F 12 Ω parallel resistors 24 V (Volhage dividen) $V_0 = 24\left(\frac{12/14}{(1+1)^2/14}\right) = \frac{24(3)}{(1+3)^2} = \frac{8V}{(1+3)^2}$ B) Find \mathcal{T} for $t \ge 0$, Rab seen by capacitor (suith open) Rab = 12 || 4 = 352, $C = \frac{1}{6}F \rightarrow \mathcal{T} = (3)(\frac{1}{6}) = 0.5$ C) $V(t) = V_0 e^{-t/t} = 8e^{-t/t} = 8e^{-t/t} = 8e^{-t/0.5} = 8e^{-2t}$

<u>Answer</u>: $V(t) = 8e^{-2t} V$ ⁷

7.2 The Source-Free RL Circuit (1)

• A first-order RL circuit consists of a inductor L (or its equivalent) and a resistor (or its equivalent) $KVL = V_{R} = 0$

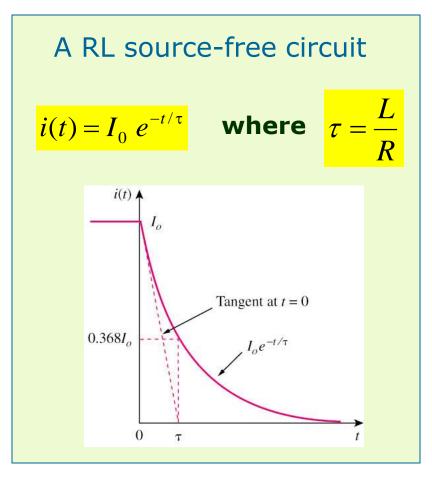


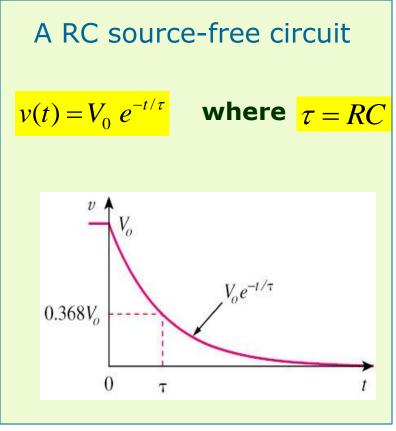


- The <u>time constant</u> τ of a circuit is the time required for the response to decay by a factor of <u>1/e or 36.8%</u> of its initial value.
- i(t) decays faster for small τ and slower for large τ .
- The general form is very similar to a RC source-free circuit.

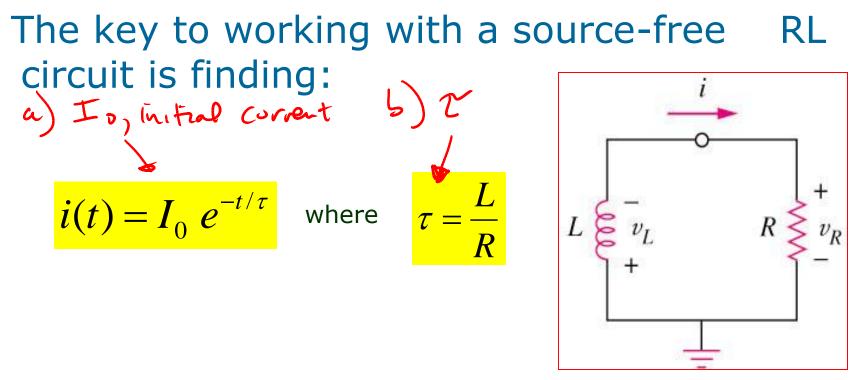
7.2 The Source-Free RL Circuit (3)

Comparison between a RL and RC circuit





7.2 The Source-Free RL Circuit (4)

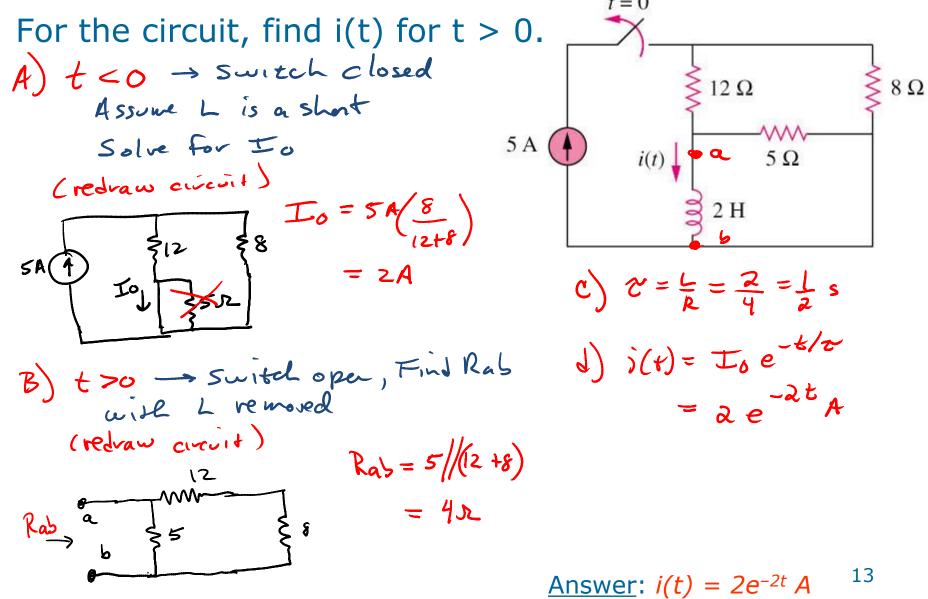


- 1. The initial voltage $i(0) = I_0$ through the inductor.
- 2. The time constant $\tau = L/R$.

7.2 The Source-Free RL Circuit (5) Example 3 3Ω Find i and v_x in the circuit. Assume that i(0) = 5 A. $\frac{1}{6}$ H 15Ω $j(t) = I_0 e^{-t/t} = 5e^{-t/t}$ Current Divide でニーム R= Ras with Inductor Removed $= 15 / (7+3) = 6 \Omega$ $V_X = 7 \overline{x} = -ale^{-36E}$ $\mathcal{C} = \frac{1}{6} = \frac{1}{36} \sec c$ ". i(t) = 5e - 36t A

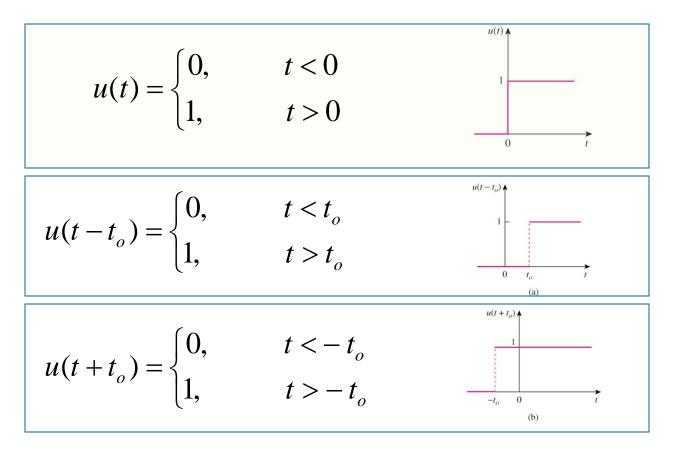
<u>Answer</u>: $i(t) = 5e^{-36t} A^{12}$

7.2 The Source-Free RL Circuit (6) <u>Example 4</u>



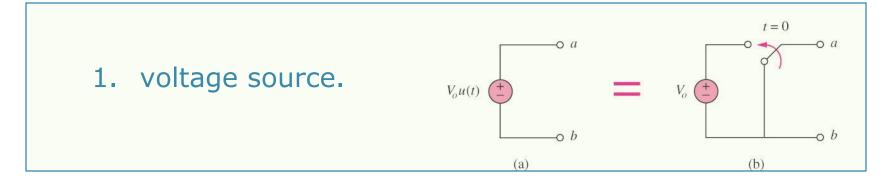
7.3 Unit-Step Function (1)

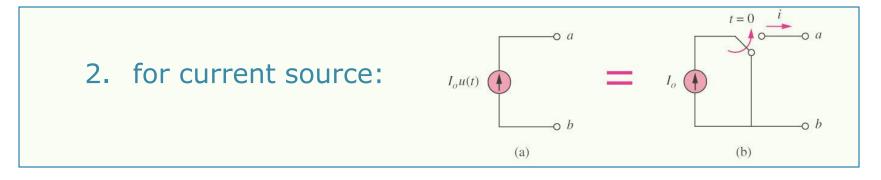
• The **unit step function** u(t) is 0 for negative values of t and 1 for positive values of t.



7.3 Unit-Step Function (2)

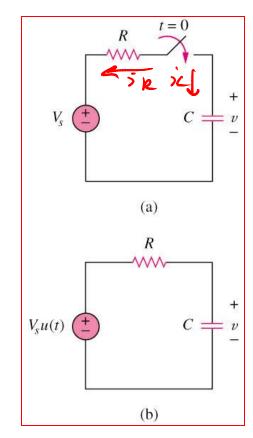
Represent an abrupt change for:





7.4 The Step-Response of a RC Circuit (1)

• The <u>step response</u> of a circuit is its behavior <u>when the</u> <u>excitation is the step function</u>, which may be a voltage or a current source.

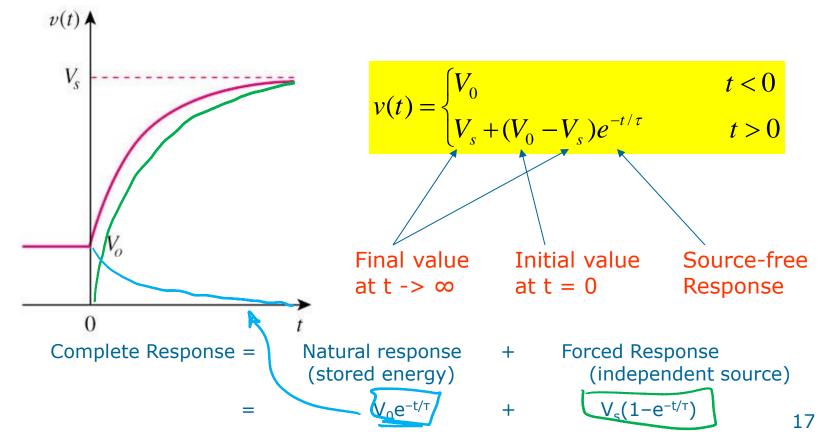


• Initial condition: $v(0-) = v(0+) = V_{0}$ • Applying KCL, $\dot{j}_{c} + \dot{j}_{k} = 0$ $c \frac{dV}{dt} + \frac{(V-V_{s} \cup (t))}{R} = 0$ or $\frac{dV}{dt} = -\frac{v - V_{s}}{R} v(t)$

• Where u(t) is the <u>unit-step function</u> ¹⁶

7.4 The Step-Response of a RC Circuit (2)

• Integrating both sides and considering the initial conditions, the solution of the equation is:



7.4 The Step-Response of a RC Circuit (3)

Three steps to find out the step response of an <u>RC circuit</u>:

- 1. The initial capacitor voltage v(0).
- 2. The final capacitor voltage $v(\infty)$ or, the final DC voltage across C.
- 3. The time constant τ .

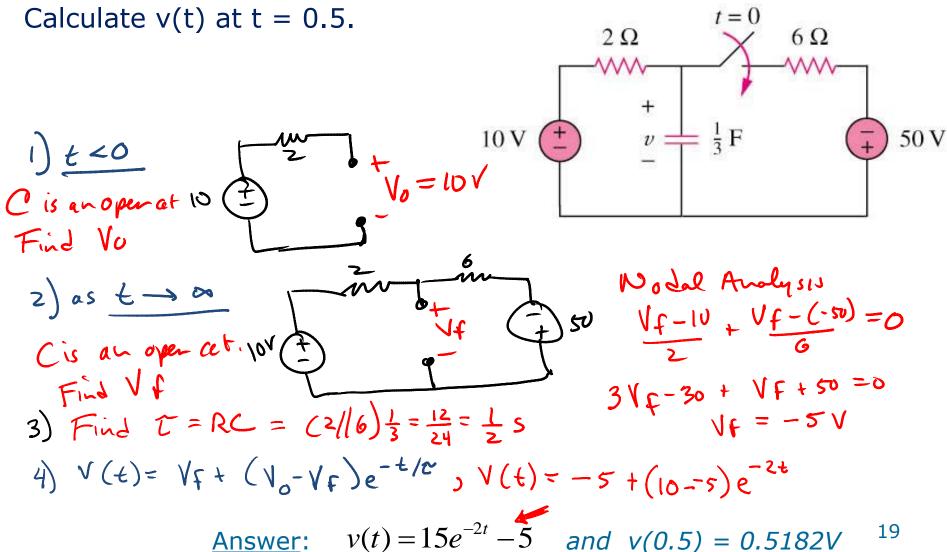
$$v(t) = v(\infty) + [v(0+) - v(\infty)]e^{-t/\tau}$$

<u>Note</u>: The above method is a <u>short-cut method</u>. You may also determine the solution by setting up the circuit formula directly using KCL, KVL , ohms law, capacitor and inductor VI laws.

7.4 Step-Response of a RC Circuit (4)

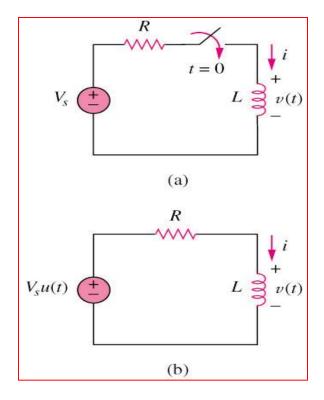
Example 5

Find v(t) for t > 0 in the circuit in below. Assume the switch has been open for a long time and is closed at t = 0.



7.5 The Step-response of a RL Circuit (1)

The step response of a circuit is its behavior when the excitation is the step function, which may be a voltage or a current source.



- Initial current $i(0-) = i(0+) = I_0$
- Final inductor current
 i(∞) = Vs/R

• Time constant
$$\tau = L/R$$

$$I = I_{o} = I_{f}$$

$$i(t) = \frac{V_{s}}{R} + (I_{o} - \frac{V_{s}}{R})e^{-\frac{t}{\tau}}u(t)$$

7.5 The Step-Response of a RL Circuit (2)

Three steps to find out the step response of an <u>RL circuit</u>:

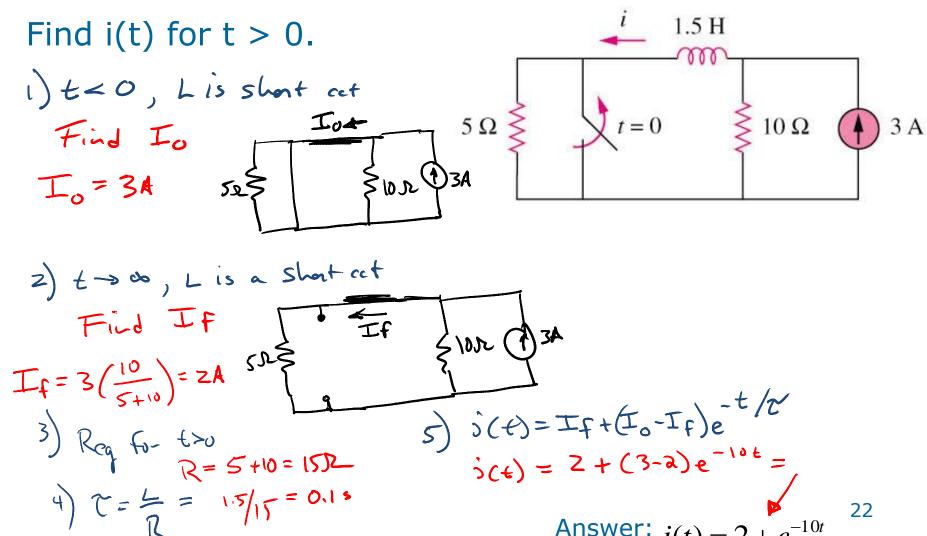
- 1. The initial inductor current i(0) at t = 0+.
- 2. The final inductor current $i(\infty)$.
- 3. The time constant τ .

$$i(t) = i(\infty) + [i(0+) - i(\infty)]e^{-t/\tau}$$

<u>Note</u>: The above method is a <u>short-cut method</u>. You may also determine the solution by setting up the circuit formula directly using KCL, KVL , ohms law, capacitor and inductor VI laws.

7.5 The Step-Response of a RL Circuit (4) Example 6

The switch in the circuit shown below has been closed for a long time. It opens at t = 0.



<u>Answer</u>: $i(t) = 2 + e^{-10t}$

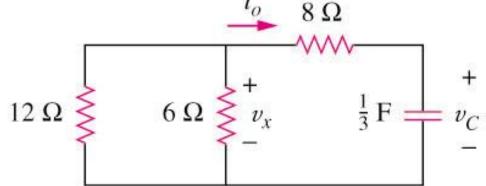
22

Handouts

7.1 Source-Free RC Circuit (4) Example 1

Refer to the circuit below, determine v_C , v_X , and i_o for $t \ge 0$.

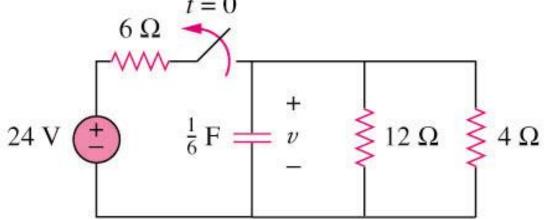
Assume that $v_c(0) = 30$ V.



<u>Answer</u>: $v_c = 30e^{-0.25t} V$; $v_x = 10e^{-0.25t}$; $i_o = -2.5e^{-0.25t} A$

7.1 Source-Free RC Circuit (5) Example 2

The switch in circuit below is opened at t = 0, find v(t) for $t \ge 0$.

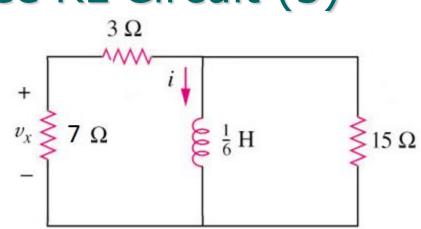


Answer:
$$V(t) = 8e^{-2t} V^{25}$$

7.2 The Source-Free RL Circuit (5) <u>Example 3</u> 3Ω

Find i and $\boldsymbol{v}_{\boldsymbol{x}}$ in the circuit.

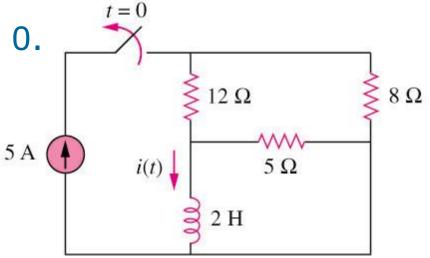
Assume that i(0) = 5 A.



<u>Answer</u>: $i(t) = 5e^{-36t} A$ ²⁶

7.2 The Source-Free RL Circuit (6) Example 4

For the circuit, find i(t) for t > 0.



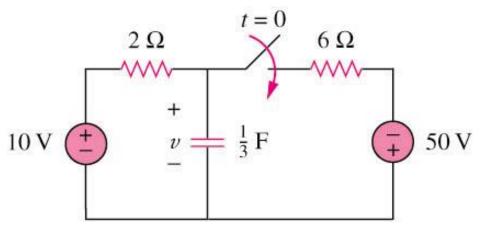
<u>Answer</u>: $i(t) = 2e^{-2t} A$ ²⁷

7.4 Step-Response of a RC Circuit (4)

Example 5

Find v(t) for t > 0 in the circuit in below. Assume the switch has been open for a long time and is closed at t = 0.

Calculate v(t) at t = 0.5.

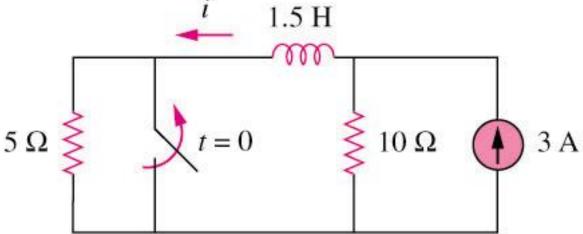


Answer:
$$v(t) = 15e^{-2t} - 5$$
 and $v(0.5) = 0.5182V$ ²⁸

7.5 The Step-Response of a RL Circuit (4) <u>Example 6</u>

The switch in the circuit shown below has been closed for a long time. It opens at t = 0.

Find i(t) for t > 0.



Answer:
$$i(t) = 2 + e^{-10t}$$
 29