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The Capacitor

Capacitors are one of the fundamental passive
components. In its most basic form, it is composed
of two plates separated by a dielectric.

The ability to store charge is the definition of
capacitance.
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A capacitor with stored charge can act as a temporary battery.



The Capacitor

Capacitance is the ratio of charge to voltage

c-Q
Vv
Rearranging, the amount of charge on a

capacitor is determined by the size of the
capacitor (C) and the voltage (V).

nample

If a 22 uF capacitor is connected to
a 10 V source, the charge iIs 220 uC



The Capacitor

An analogy:

Imagine you store rubber bands in a
bottle that is nearly full.

You could store more rubber bands
(like charge or Q) in a bigger bottle
(capacitance or C) or if you push

them in more (voltage or V). Thus,

Q=CV

i



The Capacitor

A capacitor stores energy in the form of an electric field
that is established by the opposite charges on the two

plates. The energy of a charged capacitor is given by the
equation

WzéCV2
2

where

W = the energy in joules
C = the capacitance in farads
V = the voltage in volts



The Capacitor

The capacitance of a capacitor depends on
three physical characteristics.

C =8.85x10"2F/m (géAj

C is directly proportional to
the relative dielectric constant
and the plate area.

C is inversely proportional to
the distance between the plates



Capacitance

Find the capacitance of a 4.0 cm diameter
Example sensor immersed in oil if the plates are
separated by 0.25 mm. (&, =4.0 for oil)

C =8.85x10"2F/m (g(fjAj

The plate area is A=nr’ = 7(0.02 m*)=1.26x10" m’
The distance between the plates is 0.25x10° m

(4.0)(1.26x10°° m?)
0.25x107° m

C =8.85x102F/m [ ]_ 178 pF



Capacitor types

Mica
Mica capacitors are small with high working voltage.
The working voltage is the voltage limit that cannot

be exceeded.

- Fol
Mica
~ Foll
Mica ,
ol ®
Mica
Folil




Capacitor types

Ceramic disk

Ceramic disks are small nonpolarized capacitors They
have relatively high capacitance due to high ¢,

/D

Lead wire soldered
to siver electrode

Dipped phenolic coating

dielectric Slv er electrodes deposited on

N\ ~ top and bottom of ceramic disk




Capacitor types

Plastic Film
Plastic film capacitors are small and nonpolarized. They
have relatively high capacitance due to larger plate area.

Plastic film
dielectrc

Outer wrap of
polyester film

Capacitor section
(altemate strips of
film dielectric and
Llead wire foil electrodes)

Sldercoated end




Capacitor types

Electrolytic (two types)

Electrolytic capacitors have very high capacitance but
they are not as precise as other types and tend to have
more leakage current. Electrolytic types are polarized.

+

Al electrolytic //

z K - Ta electrolytic

Symbol for any electrolytic capacitor




Capacitor types

Variable
Variable capacitors typically have small capacitance
values and are usually adjusted manually.

A solid-state device that is used as a variable
capacitor is the varactor diode; it is adjusted with an
electrical signal.




Capacitor labeling

Capacitors use several labeling methods. Small
capacitors values are frequently stamped on them such
as .001 or .01, which have units of microfarads.

Electrolytic capacitors have larger
values, so are read as uF. The unit is usually
stamped as uF, but some older ones may be
shown as MF or MMF).




Capacitor labeling

A label such as 103 or 104 is read as 10x103
(10,000 pF) or 10x104 (100,000 pF)
respectively. (Third digit is the multiplier.)

When values are marked as 330 or 6800, the
units are picofarads.

rample

What is the value of
each capacitor? Both are 2200 pF.




Capacitance, a Recap

« Capacitance occurs whenever electrical
conductors are separated by a dielectric,
or insulating material.

* Applying a voltage to the conductors
displaces the charge within the dielectric.

 Current does not actually flow through the
dielectric.

17



Capacitor

Circuit Symbol
Component

designation (C) ®
Units — Farads 4
— Usually uF or pF

Reference directions
for voltage and
current

“"L@ A~
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Voltage-Current Relationship

19



The voltage across a capacitor cannot change
Instantaneously (the current would be infinite).

If the voltage across the terminals is constant, the
current will be zero.

(looks like an open circuit at DC).

Only a time-varying voltage can produce a

displacement current. o



B

Example 1 i

< T~
O

The voltage across a 100-uF capacitor is

v(t) = 50 sin(120 #t) V

Find the displacement current i flowing into capacitor as a function of time

; ?C%\é - (tOOxI-O(’F) 50 (1207 cos(122™ €Y V/s

= .99 ess(ovt) A

Answer:
i(t) = 1.8850 cos(120 ~t)



EXxpress the voltage across the capacitor as
a function of the current

| =C —
dt

idt =Cdv —> dv = idt
C
v(t) 1t_
dx = —(1d
v(Jt‘o) Ct{ d

v(t) =é:joidr+v(to)

t

v(t) = é]idr v(0)  oc 0(E)ulr £ T

&
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In English, please?

(=

l

L. .-
v(t) = fz;(r{})—kgj'@dr 0 |

<T T™
O

+

* Translation: to find the voltage at time t:
— take the known voltage at some start time t0

— add to it the integral from tO to t of the current,
divided by C

23



What this looks like graphically

I
v(t) = 1;(r0)+5!@dr

At time 0 we measure
capacitorv=5V.

« A time varying current is then
applied to the capacitor

« \oltage at any time t is then
found as

v(t) =v(0)+ [area under i from O to t}/C

Lo ovleg for awe) t

O

- |(
I\

+ v —

O

24



Example 2

An initially uncharged 1-mF capacitor has the current
shown below across it.

Calculate the voltage acrossitatt=2ms and t=5 ms.

V(2) = 0 + [area of Triangle]/.001F t(mA) A
= Llons)m) = oy v | 100
 ,00\F —
V(5) = v(2) + [area of square]/.001F 0 -
y 6 t(ms)
:‘.O~l + CoOOBS\ (olﬂ) — 01"",\/
— e —_—
-oelF &_‘ Answer:

v(2ms) = 100 mV
v(5ms) = 400 mV



Power and Energy for the Capacitor

. \Y;
=Vl =Cv —
P dt

) :i[é:jidr+v(to)}

13
- e e 2

dW :CVdV l\;\{‘e‘ﬁ"‘*f\g \J Yo

. < —> VJ!dX — C ]‘ydyq__/ wot e cl.epewéa.w‘t
gxuﬁS b 0 0

owe Y 1
w=—-CV’
2
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Example 6.4

« A voltage pulse described as follows is applied across
the terminals of a 0.5uF capacitor:

v(t) =0 Volts, t < Os

&)

¢ .

v(t) =4tVolts, Os <t <ls
v(t) =4e“"Volts, t21s

<T T
O

« Derive the expressions for the capacitor a) current,
b) power, and c) energy.

27



A) Derive the expressions for the capacitor current

3= C dV = sy F
de C M w(t) =0 Volts, t < Os

v(t) =4tVolts, Os <t <Is

0o
t= _ v(t) =4e “Volts, t21s

S:é?ﬂoaéB/”) =0

o<« +t<4 ¢

5 = [,mfo"’) (4) = 2 uk

t>1s s (L)
~( !
= (sxes)(-ie T ) = -ae  uA

28



B) Derive the expressions for the capacitor power

ch'Oi
€=0
P %
o< €= lg
P:CL/&;(Z/M) = EL ull
t=/s ) —alt-1)

_(¢- _ - W
(£ l))(——ze, 5 - s /a;

Ik (He

29



C) Derive the expressions for the capacitor energy

w = L v

& <o
/
v

o= €< |(s /
— (3
w= L lsynt)(6er) = 4 u T

|

t = s _2 (€= —2(t-1)
/F‘%(erlo‘(’)(l(acz ) e M

30



|
l | | | | |
t(s
-1+ 1/4 s ¢ '
|
_2_

Energy is being stored whenever the N

power is positive. ) M; —L—L()

Energy is being delivered by the / J
capacitor whenever the power is w ()

negative.

S

-

r(s
0 1 2 3 - 3 6 ®)
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6.2 Series and Parallel
Capacitors (1)
e The equivalent capacitance of N parallel-

connected capacitors is the sum of the individual
capacitances.

NENENEEY
] == 6 == Cyi== Cyi=

(a) Ceq =C1 +C2 + ... +CN

I = +

32



6.2 Series and Parallel
Capacitors (2)
e The equivalent capacitance of N series-connected

capacitors is the reciprocal of the sum of the
reciprocals of the individual capacitances.

v 2 R UN
1 1

eq

_|_

1
¢, "

33



Example 3

Find the equivalent capacitance seen at the
terminals of the circuit in the circuit shown below:

50 pF \2ouf

| 60 pF /—1
O H L 2
I = _— T\ &
Ceq 4 Ee eo \
— T7OF =—20pF =/—120pF \ 40

O
Vo
|22
L 1\ \\,
—F L
"foqu

Answer:

Ceq = 40uF



6.3 Inductors (1)

e An inductor is a passive element designed
to store energy in its magnetic field.

|+— Length, 1 —]

Cross-sectional area, A

\ Core material

Number of turns, N

e An inductor consists of a coil of conducting wire.

35



Inductance

Inductance is the property of a conductor to oppose
a change in current. The effect of inductance is
greatly magnified by winding a coil on a magnetic
material.

Common symbols for inductors (coils) are

— - - {

AlIr core Iron core Ferrite core Variable



Self Inductance

Self-inductance is usually just called inductance,
symbolized by L. Self-inductance is a measure of a coil’s
ability to establish an induced voltage as a result of a
change in its current. The induced voltage always opposes
the change in current, which is basically a statement of
Lenz’s law.

The unit of inductance is the henry (H). One henry is the
Inductance of a coil when a current, changing at a rate of
one ampere per second, induces one volt across the coil.



Self Inductance

The induced voltage is given by the formula Vina = L

E "“]Ie What is the inductance if 37 mV is induced
across a coil if the current is changing at a rate of
680 mA/s?

d|
dt
Rearranging,

Vind _ OO37V _
di/ = =
At 0.68 A/s

Vind —

L= 54 mH




Factors affecting inductance

Four factors affect the amount of inductance for a
coil. The equation for the inductance of a coll is
_ NZuA

|

L

where
L = inductance in henries
N = number of turns of wire
u = permeability in H/m (same as Wb/At-m)
| = coil length on meters



[xamlﬂﬂ What is the inductance of a 2.0 cm long,
150 turn coil wrapped on an low carbon steel core
that is 0.50 cm diameter? The permeability of low
carbon steel is 2.5 x10~* H/m (Wb/At-m).

A=mré= 7:(0.0025 m)2 =7.85x10° m°

(150 )" (2510 Wh/At-m)(7.85x10°° m’)
0.020 m

= 22 mH




Physical parameters affecting inductance

The inductance given by the equation in the
previous slide is for the ideal case. In practice,
Inductors have winding resistance (R,,) and
winding capacitance (C,,). An equivalent circuit
for a practical inductor including these effects is:

Cw

]

|
m



Lenz’s law

Recall Lenz’s law states,

When the current through a coil changes, an
Induced voltage is created across the coil that
always opposes the change in current.

In a practical circuit, the current can change
because of a change in the load as shown in
the following circuit example...



Lenz’s law

A basic circuit to demonstrate Lenz’s law 1s shown.

Initially, the SW is open and there is a small
current in the circuit through L and R;.




Lenz’s law

SW closes and immediately a voltage appears
across L that tends to oppose any change in current.

» A 4
N
SW
_ H(T000 - . .
+ // | \\
Vo, — R, R,
- +
W | Initially, the meter
———— || reads same current
as before the switch

was closed.




Lenz’s law

After a time, the current stabilizes at a higher level
(due to R,) as the voltage decays across the coll.

. SW
(0000 . o
+
V., — R, R,

—\\Wly, +
: Later, the meter

T———— || readsa higher

current because of
the load change.




Practical inductors

Inductors come in a variety of sizes. A few
common ones are shown here.

Encapsulated

Wirewound, high current

Tormoid coll

Variable




Inductance

* |Inductor

— A coll of wire wrapped around a supporting
core (magnetic or non-magnetic)

— The time-varying current in the wire produces
a time-varying magnetic field around the wire

— A voltage is induced in any conductor linked
by the magnetic field

— Inductance relates the induced voltage to the
current

47



Inductor

Circuit Symbol

Component
designation (L)

Units -- Henry(s) +

— Usually mH or yH

Reference directions
for voltage and
current

48



Voltage-Current Relationship

49



\ ~, 1
D) . —
— Observations /

v V:Lﬂ V’ng
; dt |

The current across an inductor cannot

change instantaneously (the voltage would be
infinite).

If the current through the inductor is constant, the
voltage will be zero.

(looks like a short circuit at DC).

Only a time-varying current can produce an .
Induced voltage.



Current in an inductor in terms of the
Voltage across the inductor

V= Lﬂ
dt
vdt = Ldi = (dljdt
dt
vdt = Ldi
i(t)
jvdr— Lj dx

i(t)

i(t) :E_[Vdf+i(to) —>%jvdr+i(0)

51



Again, in English

L
i(1)=i(t,)+— Jm’r v =

 Translation: to find the current at time t;
— take the known current at some start time tO

— add to it the integral from tO to t of the voltage,
divided by L

52



What this looks like graphically

i(1) = f(rﬂ)+lj'vdr

L

At time 0 we measure
Inductor 1=,5 A.

‘fl'l

« A time varying voltage is then

applied to the inductor

e Current at any time t is then

found as

I(t) =i(0)+ [area under v from 0 to t]/L

O—YYY 9
+ v -
—»
l

v S‘/\(\,bA
%g’ B

2\

0 N g t dwidd

(1.._..



Power and Energy In an Inductor

. di
=VI=LI—
P dt

. 1 .
p:V|:v-E£vdr+|aQ

p=9W=u91
dt dt
dw = Lidi

de::Ljydy
0 0

W= —LlI
2



Example 5 : l T
The terminal voltage of a 2-H inductor is

v=10(1-t) V 5
Find the current flowing throughitat t=4s Y g L

and the energy stored initatt=4s.

Assume i(0) = 2 A.

€ 4 o
YLy = 30 +L!jgv d¢ = a+ -jfgw(\~x)ax
€0 o
1.‘
= & + —\Zj\_-lvx—-lgg
o
— L — W07 =2~t0o=—\gh
= 2t =z [% z ° l_—__—_ Answer:
_ T sy = 32T i(4s) = -18A
o= L= I k> Gl (4s)

w(4s) = 320]
2+ 0.5 chl—xmx o
wi i)



Example 6

Determine v, i, and the energy stored in the capacitor and
Inductor in the circuit of circuit shown below under dc

conditions. . 0.25H ==

i 3 5 g
+
4 A 30 1Q ve 7= 2F

—
Reluaw -
T- —
2 = ((25J
— 3 _ :-LL) :._(_ l\' -
o= ‘??X - }_——é'— / S < l( '\( ) Answer
e T A s



Example 6.1 — Sketch current, find max
using Wolfram Alpha

+ 1 = (0, t <0

z<‘> v3100 mH

— i =10te A, >0

* First, sketch the current waveform.
e At what instant of time iIs the current maximum?
« Wolfram Alpha: Plot[ 10t*exp(-5t), t, O, 1]

57



differentiate[ 10t*exp(-5t),t]

{ ( A) Plot(differentiate[ 10t*exp(-5t), t],t,0,1)
0.736
|
|
I
O | 02 [ (S)
i =10te™"
d—l =10(-5te™ +e") =10e™' (1-5t)
C
di 1
—:O—>1—5t:O—>t=g:O.23
O

58



Example 6.2 Using Derivative formula
Given: current thru inductor
Find: voltage across inductor

i =10te™
V= L% — (0.1)10e™ (1 5t) = e~ (1—5t)

v (V)

1.0 \
| L £ (s)

59



Are the voltage and current at maximum at
the same time?

i (A)

0.736 - — — =

0
v (V)

1.0

0.2

t(s)

60



At what instant of time does the voltage

change polarity?
i (A)

0.736 - — — =

: t(s)
0 0.
v (V) 2\

The voltage changes polarity
1.0 when the current passes
through its maximum value
and the slope changes sign.

N

0 OM6 4 (S)




Is there ever an instantaneous change in
voltage across the inductor? If so, when?

v (V)
1.0
l I
0 — —0s '®

Yes.

The voltage across the inductor changes
Instantaneously at t=0.

62



Using wolframalpha.com to
differentiate

« difff f(x), x] takes derivative of some f(x) wrt X
st

e E A(-s¢)
 difff10t*exp(-5t),1]

— Use * when needed to clarify

— Use exp() to raise e to some exponent

weks - N



3% WolframA Ipha o

diff{10t*exp(-5t),t]

Crerivative:

d -Gt
E[lﬂtexp[—S thh=e€ (10 —50¢)

Plots:

400

100f

00

200

06 -04 -0.2

2w107

1 %107 f

3% 107 b

-3 -2 -1

Alternate forms:

it from —0.6 to 0.6)

Cr—

it from —3 to 33
G

Show steps



If you don't like the plot range,

hover mouse over letter A below plot,

| differentiate] 10t®exp(-5t), t] =]
Derivative: now steps
i
—(10texp(-5t) = e "F(10-501)
dt
Plots:
\ 400
\ 300
‘m_x 200} it from —0.6 to 0.6}
\mu-
_06 —04 —02 02 04 06
ST f]



Copy paste back into WA with new limits

| differentiate] 10t%exp(-5t), t] =]
BB -3 -8 ﬁ = Examples =2 Random
Derivative: Show steps

el
EI::LD texp(—5t) =e T (10 -501)

Plots:

Mathematica plaintext input:

Plot[{10 - 50 tVEM(S 1), -jt
\\\I[][]

—06G —-04 —-0.2 nz2 04 05

r—

Enable interactivity @



Example 6.3

* Plot1, v, p, and w for Example 6.3. Line
up the plots vertically to allow easy

assessment of each variable’s behavior.

* |[n what time Iinterval is energy being
stored Iin the inductor?

* |[n what time Iinterval is energy being
extracted from the inductor?

67



Energy is being stored

i (mA)

800

400

02 04 06 08 10

when power is >0.

An increasing energy
curve indicates that
energy is being stored in
the inductor.

v (V)
1.0
0.5 |-
| | | |
0 02 —64—06 08 L0
—0.5
p (mW)
200
100 I
! | | |
0 0. ()ﬁ/ 08 1.0
w (m])
30
3

0

02 04 06 038 1.0

t(s)

1(s)

Energy is being extracted
when power is <0.

t(s)

A decreasing energy curve

being extracted from the
‘() inductor

\;‘/\L/ indicates that energy is
| | | |

68



What is the maximum energy stored in the
inductor?

w (mJ)

30 —
15 _/\\L
l l l ) l {(s)

W=l =%(O.1)(O.7§6)2

2 L peak )
W . = 27.0/mJ

69



Example 6.4 Using the integral formula

Given: voltage across inductor
Find: current through inductor

v <f> /3100 mH

v =0, t <0

v =20t "V, t>0

;ff}c»\’f‘ts\'ék
« Sketch the voltage as a function of time. 2
* Find the inductor current as a function of time.
« Sketch the current as a function of time.

70



Integrating with Wolfram Alpha

« Basic indefinite integral.

— Integrate[x"2, {x}] [-:-fz dx = I—;
* Basic definite integral r; ), 125
— Integrate[x"2,{x,0,5}] b TS



Integrating with Wolfram Alpha

* QOur integrals must be done using “dummy
variable substitution” which is a definite
Integral from tO to t. In the last example,

t0=0

*
ok
w v Ow)c

_ WM
* In this example J

— 0+ (1/0.1)*Integrate[20x*E"(-10x),{X,0,t}]

D+D—ll 20xe % dx = 2.(1-e " (10t + 1))
« 1 0



v (V)

0.736 |- — — =

|

0 0.1

0.2

0.3

i(t):%jvdﬂi(O)

t
1(t) = i_[ZOTe_Wdz' +0
0.19

i(t) = 200

—€

-107¢

100
i(t)=2(1-10te ™" —e™%)

(107 -1)

73



i(t)=2(1-10te ™ —e™™)

i (A)
Current approaches 2Aast > «
2
1 -
I I |
t(s
0 0.1 0.2 0.3 )

74



6.4 Series and Parallel
Inductors (1)

e The equivalent inductance of series-connected
inductors is the sum of the individual

inductances. Nost lila  sishvs
i L, L, I, Ly
O T — == — T
+ +, -+, -+, = 0 4 =
?z’] ffz f)3 UN

L, =L +L, +...+ L

ol = 4+ 0

(b)
75



6.4 Series and Parallel
Inductors (2)

e The equivalent capacitance of parallel inductors
is the reciprocal of the sum of the reciprocals of
the individual inductances.

(b) 76



Example 7

Calculate the equivalent inductance for the
inductive ladder network in the circuit
shown below:

20 mH 100 mH 40 mH
O S11R S11R 00—
Leq
e % 50 mH % 40 mH g 30 mH % 20 mH

W

3°“ o = 26 w¥

N

‘-’(p[)”"’:;O o

\/‘\/_\ /
soll S? = a5,

e




6.4 Series and Parallel

Capacitors (4)

e Current and voltage relationship for R, L, C

Circuit Units Voltage Current Power
element
1 +
ohms (€2) v=Ri =% p=vi=i’R
. (Ohm’s law)
Resistance
. _ . di ,_ 1 s g di
§ henries (H) _Ldt z—Lfvdt+k1 p = vi let
Inductance
_ _i _1r. _ ~dv e dv
T farads (F) v= f!dt+k —Cdt p=vi=Cv dr
Capacitance

78



Analog Integration

Inverting Integrator. The figure below shows the circuit of a inverting integrator.

!
[
l —ic(t)
R
vg(l) o A - U
'i’:H.H} —* 'L'N(” S 'Uglit}

Up{i:'r +

In this case the capacitor provides some negative feedback, but since a capacitor acts like an open circuit for dc, the dc gai
feedback the output of the OpAmp eventually goes into positive or negative saturation in practical implementations. To anah

of the OpAmp to obtain

vs(t) — on(i) dvo(t) — vn(t)]

ig(t) +ic(t) =0 = R +C 7 =0.
With vpy(t) = vp(t) = 0 this becomes
vg(t) L dvp(t) _ dvg(t) _ 1
i + i =0 = T Rcvs{i:h
Integrating both sides of the last expression then yields
1t 1t
volt) = T » vg(T)dr = ~RG ; vs(7T) dT + volts) .


http://ecee.colorado.edu/~mathys/ecen1400/labs/lab06/index.html

A differential equation solver

M- 1
R o R o
US[” o —\V - Uy —A—— - s
= y g — —o unlt
AAM vol§)/2 + va(t) + o
R
R

The second OpAmp Us is a inverting integrator. Assuming ideal OpAmps and using KCL at the inverting input node yields

) . _ 'L'A(t) dﬂo(t} _ L dﬂo(t}

Using voltage division, the voltage at the non-inverting node of OpAmp U4 is found fo be vi5(t)2. Next, use KCL at the inverting input node of U4 to obtain

W) +igt) =0 = 2”5[‘*']2;‘](”+2U"{t£”9m =0 = ws(t) = vo(t)—ualt).

Combining the two results to eliminate the intermediate quantity va(t) finally gives the differential equation

dve (1
us(t) = volt) + RC %” |

Thus, the output v(t) of the analog computer shown above is the solution of a first order differential equation with fime constant RC.



HANDOQUTS
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Example 1 -

The voltage across a 100-uF capacitor is
v(t) = 50 sin(120 at) V

Find the displacement current i flowing into capacitor as a function
of time

Answer:
i(t) = 1.8850 cos(120 ~ t)



Example 2

An initially uncharged 1-mF capacitor has the current

shown below across it.

Find the voltage across itatt =2 msand t =5 ms.

V(2) = 0 + [area of Triangle]/.001F

V(5) = v(2) + [area of square]/.001F

[ (MA) A

100

0

—

0,
,//1

Answer:
v(2ms) = 100 mV
v(5ms) = 400 mV




Example 3

Find the equivalent capacitance seen at the
terminals of the circuit in the circuit shown below:

50 wF

60 pF
o— f

Answer:

Ceq = 40uF



Example 5
The terminal voltage of a 2-H inductor is

v = 10(1-t) V

Ry -—
O

Find the current flowing through itat t=4s
and the energy stored initatt = 4 s. -

Assume i(0) = 2 A.

Answer:
i(4s) = -18A
w(4s) = IVB'ZOJ



Example 6

Determine v,, i;, and the energy stored in the

capacitor and inductor in the circuit of circuit shown
below unde ‘L 0.25H

Answer:

ip =3A

Ve =3V

w, = 1.125]

we = 9]



Example 7

Calculate the equivalent inductance for the

inductive ladder network in the circuit
shown below:

O

20 mH
IO

100 mH
L1115

Liss

—_—

40 mH
00—

% 50 mH 3 40 mH

% 30 mH §ZOmH




