5. Another way to make a Difference Amp

Find the formula for Vo in the circuit below.

Ans:
$v_{o}=-5 v_{1}+3 v_{2}$
6. Find the output voltage v_{o} [900 v]

7. Find v_{o} and i_{o} in the circuit shown below.

Ans: $350 \mathrm{mV}, 25 \mu \mathrm{~A} \quad 39$

How to Approach Op-Amp probs

1. Check for negative feedback

All of our Op-Amp ccts will be "Closed Loop" with negative feedback
2. Assume current flowing into $\mathrm{Vp} / \mathrm{Vn}$ terminals of op-amp $=0$
3. Assume Op-Amp in linear range

This means Vp must $=\mathrm{Vn}$
otherwise $A\left(V_{p}-V_{n}\right)$ takes us to saturation
4. Determine value of Vp
5. Set $\mathrm{Vn}=\mathrm{Vp}$
6. Set up nodal equation at Vn node and solve for Vo
7. Check that Vo does not exceed power supply voltages +/- Vcc (if given)

If so, then assumptions 3 and 5 do not hold
Set Vo to the power supply voltage and recalculate
If you recognize common forms you can use formulas related to them

- Very helpful in cascaded Op-Amp problems
- Best not to depend too much on these
- You should always be able to go back to KCL/KVL

