Chapter 5

The Operational Amplifier

This all came about in the 1930's when Bell Telephone had problems sending telephone signals over long distances.... amplifiers sensitive to temp and humidity \rightarrow variable phone reception

Recall Voltage divider with Load RL

- "no-load" vo = 75V
- attach RL = 150k, vo drops to 66.6 V

Resistors in Il are smaller

- The load "pulls down" the output voltage
not good for consumer electronics!

Amplifiers

- Amplifiers are devices thatmagnifysignals, and also remain mostly unaffected by changing load resistance. constant output
- Amplifiers are used in many instruments and electronic devices (iPod, cell phone, EEG) to boost signals (music, brainwaves) and buffer (isolate) them from loads.

Agenda

- Basic Amplifier Concepts
- The Op-Amp Model
- How to solve using KCL/KVL
- Standard Op-Amp Circuit Patterns
- Cascaded Op-Amp Circuits

CircuitLab Modet of an Op-Amp

Non-ideal (realistic) Op-Amp model - use this on Assignment 6 prob5

- Typically:
- Ri is very large 1 M -ohm
- Ro is small
$-A$ is $10^{5}-10^{6}$
- model applies to linear range only

The Operational Amplifier

- $\mathrm{v}+$ and v - are node voltages relative to ground sometimes we use vp andvn
- $\mathrm{vo}=\mathrm{A}(\mathrm{v}+-\mathrm{v}-)$, ie. A times voltage across the input
- Vcc, -Vcc are power supply inputs, usually +/-15V

Op Amps can be used "open loop" outside linear range, v+ $\neq \mathrm{v}$ -

- Ideal Comparator and Transfer Characteristic

- "Zero-Cross" Detector - not so good for telephone use!

2 Ways of Using Op-Amps

- "Open Loop": very high gain amplifier
- Useful for comparing 2 voltages
(nonlinear)- Fixed gain, always at MAX OUTPUT!!
- "Closed Loop" with negative feedback
(linear) - Useful for amplifying, adding, subtracting, differentiation and integration (using capacitors)
- Variable gain, controlled by resistor selection

Linear Operation -
$\mathrm{vd}=\mathrm{Vp}-\mathrm{Vn}$ is from $-\mathrm{Vcc} / \mathrm{A}$ to $+\mathrm{Vcc} / \mathrm{A}$

Ideal Op Amp Model -- Closed Loop

- $R i=$ infinity
- Roo = 0
- $\mathrm{A}=$ infinity
- $\mathrm{i}+=\mathrm{i}-=0$
- $\mathrm{V}+=\mathrm{V}$ -

IF negative feed back

Standard Form 1: Inverting Amplifier
Neg feed back
Linear vo (limit not given)

$$
v_{1}=v_{2}=0
$$

$$
\begin{aligned}
& \frac{K C L \text { at Node } 1}{\frac{U_{i}-Y_{1}}{R_{1}}}+\frac{V_{0}-y_{1}}{R f}=0 \\
& U_{0}=-\frac{R f}{R_{1}} U_{i} \\
& G \text { ain }=\frac{V_{0}}{V_{i}}=-\frac{R f}{R_{1}}
\end{aligned}
$$

$$
v_{o}=-\frac{R_{f}}{R_{1}} v_{i}
$$

Example Inverting Op-Amp Problem
a) Calculate Vo for

$$
V_{0} \quad \begin{array}{ll}
0.4 & -2 \\
2 & -10 \\
3.5 & -175-15 \text { limit } \\
=.6+3 \\
=1.6+8 \\
-2.4 & +10 \text { limit }
\end{array}
$$

b) Specify the range of Vs required to avoid saturation

$$
\begin{array}{rlrl}
+10 & =-5 v_{s}, & v_{s} & =-2 v \\
-15 & =-5 v_{s}, & v_{s} & =+3 v \\
\uparrow & & -2<v_{s}<3
\end{array}
$$

1) Problem 1 INVERTING OP AMP
find the voltage vo across the $1 \mathrm{k} \Omega$ resistor. $[-5 \mathrm{~V}] \mathrm{Rf}$

$$
V_{1}=-\frac{15}{3}(2)=-10 \mathrm{~V}
$$

How to Approach Op-Amp probs

1. Check for negative feedback

All of our Op-Amp ccts will be "Closed Loop" with negative feedback
2. Assume current flowing into $\mathrm{Vp} / \mathrm{Vn}$ terminals of op-amp $=0$
3. Assume Op-Amp in linear range

This means $V p$ must $=V n$
otherwise $A(V p-V n)$ takes us to saturation
4. Determine value of Vp
5. Set $\mathrm{Vn}=\mathrm{Vp}$
6. Set up nodal equation at Vn node and solve for Vo
7. Check that Vo does not exceed power supply voltages +/- Vcc (if given) If so, then assumptions 3 and 5 do not hold Set Vo to the power supply voltage and recalculate

If you recognize common forms you can use formulas related to them

- Very helpful in cascaded Op-Amp problems
- Best not to depend too much on these
- You should always be able to go back to KCL/KVL

Standard Form 2: Summing Amplifier

$$
v_{n}=v_{p}=0
$$

KCL node a

$$
\begin{gathered}
\frac{V_{1}-0}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}-\frac{0-V_{0}}{R_{f}}=0 \\
V_{0}=-(\underbrace{\frac{R_{f}}{R_{1}} V_{1}+\frac{R f}{R_{2}} V_{2}+\frac{R_{f}}{R_{3}} V_{3}}_{\text {sur of inputs }})
\end{gathered}
$$

$$
v_{o}=-\left(\frac{R_{f}}{R_{1}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}+\frac{R_{f}}{R_{3}} v_{3}\right)
$$

Summing Amplifier Example

Calculate v_{o} and i_{o} in the op amp circuit shown below.
Use formula, or KCL

$$
\begin{aligned}
& \frac{(2-0)}{5}+\frac{(1-0)}{2.5}-\frac{\left(0-V_{0}\right)}{10}=0 \\
& v_{0}=-10\left(\frac{2}{5}+\frac{1}{2.5}\right)=-8 \mathrm{~V} \\
& i_{0}=\frac{v_{0}}{10}+\frac{v_{0}}{2}=-4.8 \mathrm{~mA}
\end{aligned}
$$

2) Problem 2) Summing Op-Amp

Find Vo in the circuit shown if $\mathrm{Va}=0.1 \mathrm{~V}$ and $\mathrm{Vb}=0.25 \mathrm{~V} \quad[-7.5] \quad R_{f}$

$$
\begin{aligned}
V_{0} & =-\left(\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}\right) \\
V_{0} & =-\left(\frac{250}{5} V_{0}+\frac{250}{25} V_{5}\right) \\
& =-(5+2.5) \\
& =-7.5 \mathrm{~V}
\end{aligned}
$$

Standard Form 3: Non-Inverting Amplifier

$$
\begin{aligned}
& V_{1} \equiv V_{2}=V_{i} \\
& \frac{K C L \text { at } V_{1}}{0-V_{1}} \\
& R_{1}
\end{aligned} \frac{V_{0}-V_{1}}{R_{f}}=0 \quad V_{0}=V_{\text {Gain }>1}^{\left.\frac{V_{i}}{R_{1}}+\frac{V_{i}}{R f}\right)} . \underbrace{}_{V_{0}=V_{i}\left(\frac{R f}{R_{1}}+1\right)}
$$

$$
v_{o}=\left(1+\frac{R_{f}}{R_{1}}\right) v_{i}
$$

Find Vo for the Non-Inv Op-Amp

$$
\begin{aligned}
V_{0} & =v i^{\left(\frac{R_{f}}{R_{1}}+1\right)} \\
& =4\left(\frac{10}{4}+1\right) \\
& =14 \mathrm{~V}
\end{aligned}
$$

3) Problem 3) Non-Inverting

Find the output Voltage when Rx is set to 60 k
What Rx will cause saturation? [4.8V, 75k]
a) Non - inverting

Voltage divider on input

$$
v_{p}=.4\left(\frac{60}{15+60}\right)=.32 \mathrm{~V}
$$

now use formula

$$
\begin{aligned}
v_{0} & =v_{p}\left(\frac{R F}{R_{1}}+1\right) \\
& =.32\left(\frac{63}{4.5}+1\right)=4.8 \mathrm{~V}
\end{aligned}
$$

b) Total formula for vo

$$
V_{0}=.4\left(\frac{R_{x}}{15+R_{x}}\right)(15)=+5 \text { at sat uration }
$$

Solve for R_{x}

$$
R_{x}(6)=5\left(15+R_{x}\right), R_{x}=75 \mathrm{k}
$$

Difference Amplifier
Combine Non- a lav formulas:

$$
v_{0}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{4}}{R_{3}+R_{4}}\right) v_{2}-\frac{R_{2}}{R_{1}} v_{1}
$$

If we select

$$
\begin{aligned}
& \frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}} \text {, then } \\
& V_{0}=\frac{R_{2}}{R_{1}}\left(v_{2}-v_{1}\right)
\end{aligned}
$$

A balanced difference amp!

$$
v_{o}=\frac{R_{2}}{R_{1}}\left(v_{2}-v_{1}\right), \text { if } \frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}
$$

Find the output voltage $v_{0}[-80]$

$$
\begin{aligned}
& \text { Note: } \frac{1600}{200}=\frac{8}{1} \\
& \therefore \quad V_{0}=\frac{R_{2}}{R_{1}}\left(V_{2}-V_{1}\right)=8(2-12)
\end{aligned}
$$

4) Problem 4 Difference Amplifier

If $\mathrm{Vb}=4.0 \mathrm{~V}$, what values of Va will keep linear operation? [$2<=\mathrm{va}<=6$]
Again, $\frac{50}{10}=\frac{20}{4}$

$$
\begin{aligned}
\therefore v_{0} & =\frac{R_{2}}{R_{1}}\left(v_{2}-v_{1}\right) \\
v_{0} & =5\left(v_{b}-v_{a}\right) \\
& =5\left(4-v_{a}\right)
\end{aligned}
$$

Solve for

$$
\begin{aligned}
& \text { Solve for } 10=5\left(4-v_{a}\right) \rightarrow v_{a}=\frac{(20-10)}{5}=2 \\
& \text { a) }-10=5\left(4-v_{a}\right) \rightarrow v_{a}=\frac{(20+10)}{5}=6 \\
& 2<v_{a}<6
\end{aligned}
$$

Cascaded Op Amps

- A head-to-tail arrangement of two or more op amp circuits such that the output to one is the input of the next.

- Total Gain is the product of all stages

$$
\text { Gain }=\frac{v_{o}}{v_{i}}=A_{1} A_{2} A_{3}
$$

Another way to make a Difference Amp
Find the formula for Vo in the circuit below.
$\operatorname{lnv} O_{p}$-Amp

$$
v_{a}=-\frac{3 R_{3}}{R_{3}} v_{2}=-3 v_{2}
$$

Summing Op -Amp

$$
\begin{aligned}
v_{0} & =-\left(\frac{5 R_{1}}{5 R_{1}} v_{a}+\frac{5 R_{1}}{R_{1}} v_{1}\right) \\
& =-\left(-3 v_{2}+5 v_{1}\right) \\
v_{0} & =5 v_{1}-3 v_{2}
\end{aligned}
$$

Summing O_{p} - Amp

Ans:
$v_{0}=-5 v_{1}+3 v_{2}$

Find the output voltage v_{o} [900 V]

summing

$$
v_{1}=-\left(\frac{3}{3}(5)+\frac{3}{1.5}(2)\right)=-9
$$

$$
\begin{aligned}
& \frac{\text { Inverting }}{v_{0}=-\frac{100}{1} v_{1}=900 \mathrm{~V} \text { (assuming not saturated!) }} \\
& \text { Total Gain }=100\left(\mathrm{Va}_{\mathrm{a}}+2 \mathrm{~V}_{6}\right)
\end{aligned}
$$

Find v_{0} and i_{o} in the circuit shown below.
Non-lnv A

$$
\begin{aligned}
V_{a} & =\left(1+\frac{R f_{a}}{R l_{a}}\right) 20 \mathrm{mV} \\
& =5(.02)=.1 \mathrm{~V}
\end{aligned}
$$

Non-Inv B

$$
\begin{aligned}
V_{0} & =\left(1+\frac{R_{f b}}{R_{1 b}}\right) V_{a} \\
& =(3.5)(1)=.35 \mathrm{~V}
\end{aligned}
$$

$$
\text { Total Gain }=\left(1+\frac{R f_{a}}{R_{1 a}}\right)\left(1+\frac{R f b}{R 1 b}\right)=(5)(3.5)=17.5
$$

Finding jo

$$
\text { IL: } i_{0}=\frac{V_{0}}{14 k}=\frac{.35}{14000}=25 \mu \mathrm{~A}
$$

If $v_{1}=1 V$ and $v_{2}=2 V$, find v_{0} in the op amp circuit shown below.

$$
\begin{aligned}
& \frac{c}{v_{0}=-\left(\frac{10}{5} v_{a}+\frac{10}{15} v_{b}\right)} \\
& \frac{A}{v_{a}}=-\frac{G}{2} v_{1} \\
& \frac{B}{v_{b}}=-\frac{8}{2} v_{2} \\
& \text { INV } \quad \text { A } \quad{ }_{6}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore V_{0}=3 V_{1}+\frac{8}{3} V_{2} \\
& =3.1+\frac{8}{3} \cdot 2=8.333 \mathrm{~V}
\end{aligned}
$$

5.5 Application

- Digital-to Analog Converter (DAC) : a device which transforms digital signals into analog form.

Four-bit DAC: (a) block diagram (b) binary weighted ladder type

where
$V_{1}-M S B, V_{4}-L S B$
V_{1} to V_{4} are either 0 or 1 V
5.5 DAC Example

For the circuit shown below, calculate v_{o} if $\mathrm{v}_{1}=0 \mathrm{~V}, \mathrm{v}_{2}=1 \mathrm{~V}$ and $\mathrm{v}_{3}=$ IV.

$$
\begin{aligned}
& \frac{\text { Summing } O_{\rho}-A_{m p}}{0} V_{0}=-\left(\frac{10}{10} y_{1}+\frac{10}{20}+1 / 2+\frac{10}{40} y_{3}\right)_{v_{2}} \\
& \\
& \\
& =-(.5+.25) \\
& \\
& =-.75 \mathrm{v}
\end{aligned}
$$

Handouts

1) Problem 1 INVERTING OP AMP

find the voltage vo across the $1 \mathrm{k} \Omega$ resistor. [-5V]

2) SUMMING OP-AMP

Find Vo in the circuit shown if $\mathrm{Va}=0.1 \mathrm{~V}$ and $\mathrm{Vb}=0.25 \mathrm{~V} \quad[-7.5]$

3) NON INVERTING Find the output Voltage when Rx is set to 60 k What Rx will cause saturation? [4.8V, 75 k]

4) Problem 4 Difference Amplifier

If $\mathrm{Vb}=4.0 \mathrm{~V}$, what values of Va will keep linear operation? [$2<=\mathrm{va}<=6$]

5. Another way to make a Difference Amp

Find the formula for Vo in the circuit below.

Ans:
$v_{o}=-5 v_{1}+3 v_{2}$
6. Find the output voltage v_{o} [900 v]

7. Find v_{0} and i_{0} in the circuit shown below.

Ans: $350 \mathrm{mV}, 25 \mu \mathrm{~A}$

How to Approach Op-Amp probs

1. Check for negative feedback

All of our Op-Amp ccts will be "Closed Loop" with negative feedback
2. Assume current flowing into $\mathrm{Vp} / \mathrm{Vn}$ terminals of op-amp $=0$
3. Assume Op-Amp in linear range

This means $V p$ must $=V n$
otherwise $A(V p-V n)$ takes us to saturation
4. Determine value of Vp
5. Set $\mathrm{Vn}=\mathrm{Vp}$
6. Set up nodal equation at Vn node and solve for Vo
7. Check that Vo does not exceed power supply voltages +/- Vcc (if given) If so, then assumptions 3 and 5 do not hold Set Vo to the power supply voltage and recalculate

If you recognize common forms you can use formulas related to them

- Very helpful in cascaded Op-Amp problems
- Best not to depend too much on these
- You should always be able to go back to KCL/KVL

