Circuit Theory

Chapter 4 Circuit Theorems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Circuit Theorems - Chapter 4

4.1 Motivation
4.2 Linearity Property
4.3 Superposition
4.4 Source Transformation
4.5 Thevenin's Theorem
4.6 Norton's Theorem
4.7 Maximum Power Transfer

4.1 Motivation (1)

If you are given the following circuit, are there any other alternative(s) to determine the voltage across 2Ω resistor?

What are they? And how?
Can you work it out by inspection?

4.2 Linearity Property (1)

It is the property of an element describing a linear relationship between cause and effect.

A linear circuit is one whose output is linearly related (or directly proportional) to its input.

Homogeneity (scaling) property
scaled ln put
Input

$$
\mu
$$

$\underset{\substack{\boldsymbol{v} \\ \text { output } \\ \text { arty }}}{\boldsymbol{v} R} \quad \longrightarrow \quad \underbrace{}_{\substack{\boldsymbol{k} \boldsymbol{v} \\ \text { scaled output }}}=\boldsymbol{k i R}$
Additive property

$$
\longrightarrow \quad \underbrace{\boldsymbol{k}}_{\substack{\boldsymbol{j} v \\ \text { scaled output }}}=\boldsymbol{k i} \boldsymbol{R}
$$

$$
\begin{aligned}
& \text { Input input } \\
& v_{1}=i_{1} R \text { and } v_{2}=i_{i} R \\
& \rightarrow v=\left(i_{1}+i_{2}\right) R=v_{1}+v_{2}
\end{aligned}
$$

4.3 Superposition Theorem (1)

A gift of the Additive property of Linearity.
It states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltage across (or currents through) that element due to EACH independent source acting alone.

The principle of superposition helps us to analyze a linear circuit with more than one independent source by calculating the contribution of each independent source separately.
4.3 Superposition Theorem (2) We consider the effects of 8 A and 20 V one by one, then add the two effects together for final v_{0}.

Total $v_{0}=8+4=12 V$

4.3 Superposition Theorem (3)

Steps to apply superposition principle

1. Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis.
2. Repeat step 1 for each of the other independent sources.
3. Find the total contribution by adding algebraically all the contributions due to the independent sources.

4.3 Superposition Theorem (4)

Two things have to be keep in mind:

1. When we say turn off all other independent sources:
> Independent voltage sources are replaced by 0 V (short circuit) and
> Independent current sources are replaced by 0 A (open circuit).
2. Dependent sources are left intact because they are controlled by circuit variables.

4.3 Superposition Theorem (5)

Example 2

Use the superposition theorem to find v in the circuit shown below.

3A is turned off
6 V

1) Use Superposition to find $V x(3 V)$
4Ω

Total $V_{x}=8-5=3 V$
a) Turn off $4 A S R C$

b) Turn off 20 V PRC

4.3 Dependent Sources are not turned off when using the Superposition Theorem

Example 3

Use superposition to find v_{x} in the circuit below.

$$
* \mathrm{Vx}=12.5 \mathrm{~V}
$$

4.4 Source Transformation (1)

- An equivalent circuit is one whose $v-i$ characteristics at some terminals (a-b) are identical with the original circuit.
- Source Transformation is the process of replacing a voltage source v_{s} in series with a resistor R by a current source i_{s} in parallel with a resistor R, or vice versa.
- The value of i_{s} or v_{s} in the replacement circuit is chosen to have the same behavior at the terminals of interest.

4.4 Source Transformation (2)

 Equivalent at$a-J_{0}$ if

(a) Independent source transform

(b) Dependent source transform

- The arrow of the current source is directed toward the positive terminal of the voltage source.
- The source transformation is not possible when $\mathrm{R}=0$ for voltage source and $R=\infty$ for current source.

4.4 Source Transformation Relationship

- The two circuits are equivalent at abb
- IF vs $=\mathbf{i s} \mathbf{R}$ or is $=\mathbf{v s} / \mathbf{R}$
- For example, if vs $=10 \mathrm{~V}$ and $\mathrm{R}=2 \mathrm{Ohm}$
- then is $=5 \mathrm{~A}$ in source transform
- same effect at abb! $V_{0}=10 \mathrm{~V}$ for both cats!

If we hide the cats, we cannot tell which is which by measuring v or i at $a-b$
4.4 How does that work exactly?
(A)

(B)

- Let's add a resistor R_{x} at $a-b$ in both circuits
(A) $v=\left(\frac{R_{x}}{R_{x}+2}\right) 10 V, j=\frac{10}{R_{x}+2} A$
(B)

$$
\begin{array}{rlrl}
v & =5\left(R_{x} \|_{2}\right) & , \quad i=\left(\frac{2}{R_{x}+2}\right)^{5} \mathrm{~A} \\
& =5\left(\frac{2 R_{x}}{R_{x}+2}\right) & & \therefore \text { Same behavior for all } R_{x}!!
\end{array}
$$

4.4 Source Transformation (3)

Example 4
Find v_{0} in the circuit shown below using source transformation.

a) \times form $V \rightarrow I$ sure

b) Combine parallel R 's $+I-S R C s$
c) Calc vo

$$
\begin{aligned}
V_{0} & =(.015)\left(\frac{600 \cdot 1200}{1800}\right) \\
& =6 \mathrm{~V}
\end{aligned}
$$

2) Find v_{o} in the circuit shown below using source transformation.
a) X form $V \rightarrow I$ sire

b) Combine $\|$ R's
c) X Form $I \rightarrow V$ sere
d) Cole vo

$$
\begin{aligned}
& U_{0}=\frac{5.480}{68} \\
& U_{0}=35.29 \mathrm{~V}
\end{aligned}
$$

Some other tricks with Source Transform:
Resistors in Parallel with V source can be removed
Resistors in Series with I source can be removed

Can Remove. Does not affect $V a b$.
(Does draw more current)
from V-sure
$V_{a b}=75 \mathrm{~V}$ regardless

Can remove. Does not affect
 current flowing thru 20Ω Resistor.
Does require more voltage
from I-sre
$U_{a b}=100 \mathrm{~V}$ regardless

Multiple sources in parallel
can be converted to current sources, added and reduced Likewise, sources in series \rightarrow Voltage sources, added, reduced

Combine I-sres $+\| R$'s

$$
\begin{aligned}
V_{0} & =-1.25\left(\frac{32}{12} \| 2\right) \\
& =-1.25\left(\frac{\frac{16}{3}}{2+\frac{8}{3}}\right) \\
& =-1.25\left(\frac{16}{14}\right)=-\frac{40}{7} \\
& =-5.71 \mathrm{~V}
\end{aligned}
$$

However, Beware
"Rebold's Rule"

- Never Source Transform a Resistor used as a control for a Dependent Sro
(A)

this Resistor
should rot be pant of a x form
(B)

$$
\begin{aligned}
& v_{x}=10\left(\frac{2}{10}\right)=2 v \\
& v_{0}=5 v_{x}=10 v
\end{aligned}
$$

This Source Xform has changed a distant et Variable \downarrow

$$
\begin{aligned}
& U_{x}=5(2 \| 8)=5 \cdot \frac{16}{10}=8 \mathrm{~V} \\
& U_{0}=5 U_{x}=40 \mathrm{~V}!!
\end{aligned}
$$

4.5 Thevenin's Theorem (1)

It states that a linear two-terminal circuit (Fig. a) can be replaced by an equivalent circuit (Fig. b) consisting of a voltage source $V_{T H}$ in series with a resistor $R_{T H}$,

(a)
where

- VTH is the open-circuit voltage at the ${\underset{\tau \mathrm{Th}}{ }}$ terminals.

- $\boldsymbol{R T H}$ is the input or equivalent resistance
(b) at the terminals when the independent sources are turned off, sometimes called the "Lookback Resistance"

4.5 Thevenin's Theorem (2)

Example 5

a) Turn off Indep Sues to find Nth

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit shown below. Then find i .

3) Find Thevenin Eq at $a-b$ note how R4) does not affect Voc! [Vth $=32$, Ruth $=8$]

Lets use NV to find $V=V$ th

$$
\begin{gathered}
\left(\frac{V-25}{5}+\frac{V}{20}-3=0\right) \times 20 \rightarrow \\
5 V=160, V_{t h}=32
\end{gathered}
$$

Turn off Sources to find Rah

$$
R_{\text {th }}=4+5 \| 20=8 \Omega
$$

4) Find the Thèvenin equivalent circuit at the terminals $\mathrm{A}-\mathrm{B}$. Rt $=25 \Omega ; \mathrm{Vt}=160 \mathrm{~V}$

c) use voltage divide formula
d) Turn off SHe for Roth

$$
\begin{aligned}
& U_{\text {th }}=\left(\frac{50}{100}\right) 320=160 \mathrm{~V} \\
& R_{\text {th }}=50 \|_{50}=25 \Omega
\end{aligned}
$$

Finding Thevenin Eq with Dependent Sources

- Vth is still the open circuit voltage - across the terminals of interest
- To find Rth,
- we CAN turn off Independent Sources
- we CANNOT turn off Dependent Sources
- they depend on other circuit variables
-SOLN: hook up an external source at terminals, find Vo/Io = Rth

4.5 Thevenin's Theorem (3)

a) Find V th as before ($V_{o c}$ at $a-b$)

Example 6

Find the Thevenin equivalent circuit of the circuit shown below to the left of the terminals.

Find Eth by j) turn off ides ste
b) Find RAh by ii) connect external sic

27
*Refer to in-class illustration, textbook, answer $V_{T H}=5.33 \mathrm{~V}, R_{T H}=0,444 \Omega$

Finding Vth using Mesh Analysis

Super mesh:

$$
-6+5 i a+3 i b+4 i b=0
$$

Constraint Eq:

$$
\begin{aligned}
& i b-i a=1.5 I_{x}=1.5 i b \\
& \operatorname{IAlso}_{\text {or, }}-.5 i b=i a \\
& i b=I_{x}
\end{aligned}
$$

Substituting $i_{a}=-.5 i b$ into to p eq

$$
\begin{aligned}
& -2.5 i b+7 i b=6 \\
& i b=\frac{6}{4.5}=1.333 \\
& V_{t h}=4 i b=5.333 \mathrm{~V}
\end{aligned}
$$

Finding Ruth in cot with Depend Sro
a) Turn off Indep Sore

c) $\frac{\mathrm{KCL} \text { at } X}{I_{x}+i=.25 \mathrm{~A}}$

KVL Green Loop

$$
\begin{aligned}
-5\left(.5 I_{x}\right) & +3 I_{x}+1 V=0 \\
.5 I_{x} & =-1 \\
I_{x} & =-2 \\
\therefore \quad i=125 \mathrm{~A}-I_{x} & =2.25 \mathrm{~A}
\end{aligned}
$$

d) $R_{\text {th }}=\frac{1 \mathrm{~V}}{2.25 \mathrm{~A}}=.44 \Omega$
c) Solve for i
d) $R_{\text {th }}=\frac{1 v}{i}$
b) Connect External Sure (IV, could be anything)
5) Find Thevenin at $a-b$ (Vth=8, Ruth $=1$)

Nodal Analysis for V th

$$
\begin{aligned}
& \frac{v t_{h}}{8}+4+\frac{v \text { th }-24}{2}+3 i_{x}=0 \\
& i_{x}=\frac{v \text { th }}{8} \\
& 8 v_{\text {th }}=64 \rightarrow v_{\text {th }}=8 \mathrm{~V}
\end{aligned}
$$

External sue for Roth

ob

$$
L_{i x}=1 A
$$

KCL at Node X

$$
\frac{\mathrm{KCL} \text { at Node } x}{i=1+4+3=8 \mathrm{~A}} \rightarrow \text { RAh }=\frac{8 V}{8 A}=1 \Omega
$$

6) Find the Thèvenin equivalent circuit at the terminals U-V. (Vth=0, Rth = 9.74)

a) No Indep Sre $\rightarrow V_{\text {sh }}=0$
b) Conrrect IV Source

$$
V_{A}=I V
$$

c) $K V L$

$$
\begin{gathered}
-2 V_{a}-1 V+\left(-3 I_{B}\right)+60 I_{B}=0 \\
57 I_{B}=3 V \\
I_{B}=\frac{3}{57} \mathrm{~A}
\end{gathered}
$$

d) KCL at hode V

$$
\overline{i=\frac{1}{20} A+I_{B}}=\frac{1}{20}+\frac{3}{57}=.1026 \mathrm{~A}
$$

e) $R_{t h}=\frac{1 \mathrm{~V}}{1026 \mathrm{~A}}=9.74 \Omega$

4.6 Norton's Theorem (1)

It states that a linear two-terminal circuit can be replaced by an equivalent circuit of a current source I_{N} in parallel with a resistor R_{N},

Where

- I_{N} is the short circuit current through the terminals.
- R_{N} is the input or equivalent resistance at the terminals when the independent sources are turned off.

(b)

The Thevenin's and Norton equivalent circuits are related by a source transformation.

4.6 Norton's Theorem (2)

Example 7

Find the Norton equivalent circuit of the circuit shown below.

(a)
b) Find $I_{N}=I_{S C}$ short circuit current \quad +hrs $a-b$

(b)
*Refer to in-class illustration, textbook, $R_{N}=1 \Omega, I_{N}=10 \mathrm{~A}$.

Finding Norton Eq, previous slide

$$
\begin{aligned}
& V_{x}=1 V \\
& i_{x}=\frac{3 V x}{6}=.5 \mathrm{~A} \\
& 2(i-i x)=1 V \\
& i=.5+i x=1 \mathrm{~A} \\
& R_{N}=\frac{1 V}{1 A}=1 \Omega
\end{aligned}
$$

NORTON EQUIV

Shorting $a-b$ sets $V_{x} \equiv 0$

$$
\not+2 v_{x} \equiv 0
$$

All current goes thru $a-b$ path of lust resistance

$$
I_{S C}=10 A=I_{N}
$$

Therenin Equiv

- Or find Vth and calculate Isc = Vth/Rth
4.7 Maximum Power Transfer (1)

If the entire circuit is replaced by its Thevenin equivalent except for the load, the power delivered to the load is:

$$
P=i^{2} R_{L}=\left(\frac{v+h}{R_{t h}+R_{L}}\right)^{2} R_{L}
$$

To max power going to R_{L},
set $R_{L}=R_{\text {th }}$
then $P_{\text {max }}=\frac{V_{\text {th }}{ }^{2}}{4 R_{L}}$

The power transfer profile with different R_{L}

4.7 Maximum Power Transfer (2)

Example 8

Determine the value of R_{L} that will draw the maximum power from the rest of the circuit shown below. Calculate the maximum power.

(a)

(b)
*Refer to in-class illustration, textbook, $R_{L}=4.22 \Omega, P_{m}=2.901 \mathrm{~W}$
a) Find Ruth

Use Nodal Analysis

$$
\begin{aligned}
& \frac{v_{0}}{2}+\frac{v_{0}-3 v_{x}}{1,}+\frac{v_{0}-1}{4}=0 \\
& v_{x}=-v_{0} \\
& 19 v_{0}=1, v_{0}=\frac{1}{19}=.0526 v \\
& i=\frac{1-v_{0}}{4}=\frac{1-.0526}{4}=.2368 \\
& R_{\text {th }}=\frac{1}{.2368}=\frac{4.22 \Omega}{=}
\end{aligned}
$$

b) Find Vth

Use Mesh Analysis

Thevenin Eq Cet:

$$
\begin{aligned}
&-9+2 i_{0}+1 i_{0}+3 v_{x}=0 \\
& u_{x}=2 i_{0} \\
& 9 i_{0}=9, i_{0}=1 A
\end{aligned}
$$

KVL

$$
\begin{aligned}
& -3 v_{x}-1 i_{0}+4(0)+v_{\text {th }}=0 \\
& v_{\text {th }}=3 v_{x}+1 i_{0}=7 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& R_{L}=R_{\text {th }}=4.22 \Omega \\
& P_{\text {max }}=\frac{V_{t h}^{2}}{4 R_{\text {th }}}=\frac{7^{2}}{4(4.22)}=2.901 \omega
\end{aligned}
$$

C) Set RL = Rth

Pmax $=$ Vth²/(4Rth) $\quad[2.901 \mathrm{~W}]$
7) What is the most power we can deliver to RL? (use Vth, Rth from prob 4) [256 W]

$$
\begin{aligned}
& V_{\text {th }}=160 \mathrm{~V} \\
& R_{\text {th }}=25 \Omega \\
& \text { Set } R_{L}=R_{\text {th }}=25 \Omega \\
& P_{\text {max }}=\frac{160^{2}}{4(25)}=256 \mathrm{~W}
\end{aligned}
$$

8) Find the Max Power that can be delivered to a load at abb [125 mW]

$$
\begin{aligned}
& V_{\text {th }}=-.5 r \\
& \text { Set } R_{L}=R_{\text {th }}=0.5 \Omega \\
& P_{\text {max }}=\frac{(-.5)^{2}}{4(.5)}=\underline{=.125 \mathrm{~W}}
\end{aligned}
$$

Summary of Thevenin/Norton

- Vth $=$ open cct voltage at terminals
- Rth = equivalent Resistance seen at terminals when all
independent sources turned off
- In = current through terminals when they are shorted
- $\mathrm{Rn}=$ Rth
- In $=$ Vth/Rth, Vth $=$ In $*$ Rn

Finding $R_{\text {thevenin }}$

- IF Circuit has ONLY Independent Srcs:
- Option A:
- Turn off all sources
- Find equivalent resistance between terminals
- Option B:
- Find Vth, In (short circuit current)
-Rth $=$ Vth/In

Finding $\mathrm{R}_{\text {thevenin }}$

- If Circuit has Dependent + Independnt Sources:
- Option A:
- Turn off all INDEP sources
- Connect an External Source to terminals (Vo or Io)
- Find the other quantity (Io or Vo)
-Rth $=$ Vo/Io
- Option B:
- Find Vth (open cct volts), In (short cct current)
- Rth $=$ Vth/In

Finding Rthevenin

- Circuit has ONLY Dependent Sources:
- Only Option:
- Connect an External Source to terminals (Vo or Io)
- Find the other quantity (Io or Vo)
- Rth $=$ Vo/Io

Handouts

1) Use Superposition to find $V x$ (3V)

2) Find v_{o} in the circuit shown below using source transformation.

3) Find Thevenin Eq at a-b

 note how R4 does not affect Voc! [Vth=32, Rth=8]

4) Find the Thèvenin equivalent circuit at the terminals $\mathrm{A}-\mathrm{B} . \mathrm{Rt}=25 \Omega ; \mathrm{Vt}=160 \mathrm{~V}$

5) Find Thevenin at $a-b(V t h=8, R t h=1)$

6) Find the Thèvenin equivalent circuit at the terminals

$$
\mathrm{U}-\mathrm{V} .(\mathrm{Vth}=0, \mathrm{Rth}=9.74)
$$

7) What is the most power we can deliver to RL? (use Vth, Rth from prob 4) [256 W]

8) Find the Max Power that can be delivered to a load at a-b [125 mW]

