ENGR12

Chapter 2 Basic Laws

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic Laws - Chapter 2

- 2.1 Ohm's Law.
- 2.2 Nodes, Branches, and Loops.
- 2.3 Kirchhoff's Laws.
- 2.4 Series Resistors and Voltage Division.
- 2.5 Parallel Resistors and Current Division.
- 2.6 Wye-Delta Transformations.

2.1 Ohms Law (1)

- Ohm's law states that the voltage across a resistor is directly proportional to the current I flowing through the resistor.
- Mathematical expression for Ohm's Law is as follows:

$$v = iR = (a)(io) = zov$$

 Two extreme possible values of R: 0 (zero) and ∞ (infinite) are related with two basic circuit concepts: short circuit and open circuit.

if R=0, V=iR=0 for all i (short) if $R=\infty$, $i=\frac{V}{R}=0$ for all v (open)

2.1 Ohms Law (2)

• <u>Conductance</u> is the ability of an element to conduct electric current; it is the reciprocal of resistance R and is measured in mhos or siemens. if R = 10 k S

$$G = \frac{1}{R} = \frac{i}{v}$$

• The power dissipated by a resistor:

$$p = v^{2}i = i^{2}R = \frac{v^{2}}{R}$$

$$= (10)^{5} = (5^{2})^{2} = \frac{10^{2}}{R} = 50 w$$
Always
For Resistors

 $G = \frac{1}{R} = .0001 \text{ T}$ or .0001 S

Find Currents I1 and I2

i1 = 15A i2 = -7.5A

P1 = 1125 W P2 = 562.5 W

Shorts and Open Circuits

• Short Circuit: R = 0 Ohm

$$IOV + R=0, \qquad T=\frac{V}{R}=\frac{10}{0}=\infty 11$$

 $G=\infty$ In practice, wire gets very hot
may welt - how fuses work

• Open Circuit: $R = \infty$ Ohm

IOV
$$(f)$$
 $R = \infty, G = 0$ $I = \frac{V}{R} = \frac{10}{\infty} = 0.11$
No current will flow across an open circuit

2.2 Nodes, Branches and Loops (1)

- A branch represents a single element such as a voltage source or a resistor.
- A node is the point of connection between two or more branches.
- A loop is any closed path in a circuit.
- A network with b branches, n nodes, and I independent loops will satisfy the fundamental theorem of network topology:

$$b = l + n - 1$$

How many branches, nodes and loops are there? 5 = 3 + 3 - 1

2.2 Nodes, Branches and Loops (3)

Example 2

2.3 Kirchhoff's Laws (1)

• Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

2.3 Kirchhoff's Laws (2)

Example 4

 Determine the current I for the circuit shown in the figure below. (Here we choose to use use positive for outbound currents)

Determine the current through each of the resistors in this circuit.

i1 = 5mA i2 = -5 mA

Problem 1 Determine the current through each of the resistors in this circuit.

2.3 Kirchhoff's Laws (3)

• Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.

Convention: Use First sign you encounter for each element: use clockwise path (OK to change but be consistent!) v_4 $-v_5 +$ $\sum_{n=0}^{\infty} v_n = 0 = -v_1 + v_2 + v_3 - v_4 + v_5$ Mathematically,

m=1

2.3 Kirchhoff's Laws (4)

Example 5

 Applying the KVL equation for the circuit of the figure below. (travelling clockwise, and using the 1st sign on each component we encounter along the path)

Find the voltage across resistor R2.

KVL on outer loop:

 $-10 + 5 + V_2 = 0$

 $V_2 = 5 V$

Problem 1 Find the voltage across resistor R0.

KCL and KVL in one circuit Find the value of VO.

Is the interconnection valid?

$$\frac{\text{KCL at } \text{A}}{\text{i}_{\delta} + 25\text{A}} = 0 \rightarrow \text{i}_{\delta} = -25\text{A}}$$

$$\frac{\text{KVL outer loop}}{6\text{i}_{\delta} - 50 + 250} = 0$$

$$\frac{\text{i}_{\delta} = -\frac{200}{6} = -33.3 \neq -25}{6}$$

$$\therefore \text{ Interconnet NOT valid}$$

Problem 2 Find the current through the 10 k Ω resistor.

$$\frac{501 v_{1} v_{2}}{V_{1} + V_{2}} = 0$$

$$10i_{1} - 2i_{1} = 10$$

$$i_{1} = \frac{10}{12} = .833 \text{ mA}$$

Further Drills on KCL/KVL

 $\frac{k_{VL}}{-75+V_{25}} = 0 - V_{25} = 75V$

 $\frac{OL}{L} = \frac{V_{25}}{25} = \frac{3A}{25}$

$$\frac{OL}{L} = -\frac{50}{25} = -\frac{2A}{25}$$

Problem 3 Find the current through the 300 Ω resistor. HARD!!

Problem 3 Find the current through the 300 Ω resistor. HARD!!

Handouts Day 1

1) Problem 1 Determine the current through each of the resistors in this circuit.

i1 = 5mA, i2 = -2.5 mA, i3 = -3.5 mA, i4 = 1 mA

2) Problem 1 Find the voltage across resistor RO. (12V)

3) KCL and KVL in one circuit Find the value of VO.

4) If io is 1A, Find i1

Handouts Day 2

<u>**1**) Problem 2</u> Find the current through the 10 k Ω resistor.

Find V

3)

4)