Circuit Theory Chapter 14 Frequency Response

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Frequency Response Chapter 14

- 14.1 Introduction
- 14.2 Transfer Function
- 14.3 Series Resonance
- 14.4 Parallel Resonance
- 14.5 Passive Filters

14.1 Introduction (1)

What is FrequencyResponse of a Circuit?

It is the <u>variation in a circuit's</u> <u>behavior</u> with change in signal frequency and may also be considered as the variation of the gain <u>and phase with frequency</u>.

http://en.wikipedia.org/wiki/Tacoma Narrows Bridge (1940) http://lpsa.swarthmore.edu/Analogs/ElectricalMechanicalAnalogs.html

14.2 Transfer Function (1)

 The transfer function H(ω) of a circuit is the <u>frequency-dependent ratio</u> of a <u>phasor output</u> <u>Y(ω)</u> (an element voltage or current) to a <u>phasor</u> <u>input X(ω)</u> (source voltage or current).

14.2 Transfer Function (2)

• Four possible transfer functions:

$$H(\omega) = \text{Voltage gain} = \frac{V_o(\omega)}{V_i(\omega)}$$

$$H(\omega) = \text{Transfer Impedance} = \frac{V_o(\omega)}{I_i(\omega)}$$

$$\frac{X(\omega)}{\text{Input}}$$

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = |H(\omega)| \angle \phi$$

$$Output$$

$$H(\omega) = \text{Current gain} = \frac{I_o(\omega)}{I_i(\omega)}$$

$$H(\omega) = \text{Transfer Admittance} = \frac{I_o(\omega)}{V_i(\omega)}$$

For the RC circuit shown below, obtain the transfer function Vo/Vs and its frequency response. Let $v_s = V_m cos\omega t$.

14.2 Transfer Function (6)

Solution:

Ex3) Find the transfer function $H(\omega)=V_{out}/V_{in}$. What type of filter is it?

H(w)=1000/(jw+11000), Lowpass filter

Wolfram Alpha, add abs() for mag

www.wolframalpha.com/input/?i=plot+abs%281000%2F%28iw%2B11000%29%29%2C+w%2C+0%2C100000

12

Plotting phase in Wolfram

www.wolframalpha.com/input/?i=plot+180%2Fpi*arg%281000%2F%28iw%2B11000%29%29%2C+w%2C+0%2C100

-60

-70

-80 E

Magnitude of H(w)

Phase of H(w)

Plot in Matlab:

w = [1:100:1e6]; H = 1000./(j*w+11000)plot(w, abs(H))

Find wo for

$$H(w) = \frac{1000}{(1,000 + jw)} / 11,000$$

 $H(w) = \frac{1}{11} = \frac{.0909}{.000}$
 $H(w) = \frac{1}{1 + jw} = \frac{.0909}{.000}$

Wo is freq at which real
and imaginary parts have same
magnined.
$$|H(0)|=.0909$$
 $|H(w_0)|=\frac{.0909}{V_2}=.064$
 $|H(0)|=.14$

Ex 4) Use the Inverting Op-Amp formula to derive the transfer function. Find the cutoff frequency of the filter. Obtain the output voltage in s.s.s. when the input voltage is $V_{in}=1\cos(100t)$ V and $V_{in} = 1\cos(10,000t+90^{\circ})$ V. Zf = RInverting op-AMP $1 \text{ k}\Omega$ R $Gain = V_{ivt} = H/w = -Z_f$ $1 \text{ k} \Omega$ Vin Ζ. $H(w) = \frac{-R}{(R + \frac{1}{jwc})/R} = \frac{-1}{1 + \frac{1}{jwrc}}$ $H(\omega)$ $\omega_0 = \frac{1}{RC} = \frac{1}{(10^3)(10^7)} = 10^4 \text{ Rad/s}$ at w= 100 Rad/s Win = 120 -> Vout = Vin H(100) = $j(\frac{109}{102})$ j100 -1 100 :. Vout $(t) = .61 \cos(100t - 90^{\circ})$ at $w = 10^4 \text{ R/s}$ $\text{Vin} = 1290^\circ \rightarrow \text{Vart} = \frac{1290^\circ}{j\binom{10^4}{10^4} - 1} = \frac{1290^\circ}{72235^\circ} = .7072-45^\circ$: Vout $(t) = .707 \cos(10^4 t - 45^\circ)$ 15

 $\omega c = 10^4 \text{ rad/s}; v_{out, s.s.s} = 0.01 cos(100t-90^\circ)V$, when $v_{in} = 1 cos(100t)V$; $v_{out, s.s.s} = 0.707 cos(10,000t-45^\circ)V$, when $v_{in} = 1 cos(10,000t+90^\circ)V$

w = [1:100:1e6]; H = 1./ (j*(10000./w) - 1); semilogx(w,abs(H))

magnitude

14.3 Series Resonance (1)

<u>Resonance</u> is a condition in an RLC circuit in which the capacitive and inductive reactance are equal in magnitude, thereby resulting in <u>purely resistive</u> impedance.

Resonance frequency:

when
$$w_{o}L = \frac{1}{w_{o}C}$$

$$w_{o} = \frac{1}{1/LC}$$

$$f_0 = \frac{1}{2\pi\sqrt{Lc}}$$

14.3 Series Resonance (2)

The features of series resonance:

The impedance is purely resistive, Z = R;

- The supply voltage Vs and the current I are in phase, so $\cos \theta = 1$;
- The magnitude of the impedance $Z(\omega)$ is minimum;
- The inductor voltage and capacitor voltage can be much more than the source voltage. 180° out of phase so

Cancel out

 $\mathbf{V}_s = V_m \underline{/\theta}$

 $Z = R + j(\omega L - \frac{1}{\omega C})$

14.3 Series Resonance (3)

Bandwidth B

The frequency response of the resonance circuit current is

$$I = |I| = \frac{V_{m}}{\sqrt{R^{2} + (\omega L - 1/\omega C)^{2}}}$$

$$P(\omega) = \frac{1}{2}I^2R$$

 $\mathbf{V}_{s} = V_{m} \angle \theta \stackrel{\texttt{+}}{=} \overbrace{\mathbf{I}}_{j \omega C} \overset{\texttt{I}}{=} \frac{1}{j \omega C}$

 $Z = R + j(\omega L - \frac{1}{\omega C})$

The highest power dissipated occurs at resonance:

14 3 Series Resonance (4)

<u>Half-power frequencies</u> ω_1 and ω_2 are frequencies at which the dissipated power is <u>half the maximum value</u>:

$$P(\omega_1) = P(\omega_2) = \frac{1}{2} \frac{(V_m/\sqrt{2})^2}{R} = \frac{V_m^2}{4R}$$

The half-power frequencies can be obtained by setting $Z = R + j(\omega - \frac{1}{\omega c})$ equal to $\sqrt{2} R$: $\omega = \frac{1}{\omega c} = R$, $\omega^2 - \frac{R}{\omega} = \frac{1}{2c} = 0$

14.3 Series Resonance (5)

Quality factor,

 $Q = \frac{\text{Peak energy stored in the circuit}}{\text{Energy dissipated by the circuit}} = \frac{\omega_o L}{R} = \frac{1}{\omega_o CR}$ in one period at resonance

The relationship between the B, Q and ω_{0} :

$$\sim$$
 B

 The quality factor is the <u>ratio</u> of its resonant frequency to its bandwidth.

- If the bandwidth is <u>narrow</u>, the quality factor of the resonant circuit must be high.
- If the band of frequencies is wide, the quality factor must be low.

A series-connected circuit has R = 4 Ω

- and L = 25 mH.
 - a. Calculate the value of C that will produce a quality factor of 50.
 - b. Find ω_1 and ω_2 , and B.
 - c. Determine the average power dissipated at $\omega = \omega_0, \omega_1, \omega_2$.

Take
$$V_m = 100V.$$

a) $Q = \frac{W_0 L}{R} = \frac{1}{W_0 CR} = 50 \rightarrow W_0 = 50 \left(\frac{R}{L}\right) = 50 \left(\frac{4}{.025}\right) = 8000$
Here $C = \frac{1}{Q_{W_0}R} = \frac{1}{(50)(8000)(4)} = \frac{.625 \mu F}{.025}$
b) $B = \frac{R}{L} = \frac{4}{.025} = 160 R/s$
 $W_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{Lc}} = -\frac{4}{.05} + \sqrt{\frac{4}{.05}}^2 + \frac{1}{(.025)(.625 \chi/o^{-7})} = -80 + 8000.4 = \frac{8080 R/s}{R}$
c) $P(W_0) = \frac{1}{2} \frac{V_{W_1}^2}{R} = \frac{1}{2} \frac{C_{(50)}^2}{4} = 1250 W. P(W_1) = P(W_2) = 625 W$

14.4 Parallel Resonance (1)

It occurs when imaginary part of Y is zero

14.4 Parallel Resonance (2)

Summary of series and parallel resonance circuits:

characteristic	Series circuit	Parallel circuit
W ₀	$\frac{1}{\sqrt{LC}}$	$\frac{1}{\sqrt{LC}}$
Q	$\frac{\omega_o L}{R}$ or $\frac{1}{\omega_o RC}$	$\frac{R}{\omega_o L}$ or $\omega_o RC$
В	$\frac{\omega_o}{\mathrm{Q}}$	$\frac{\omega_o}{Q}$
$\omega_{1,} \omega_{2}$	$\omega_o \sqrt{1 + \left(\frac{1}{2Q}\right)^2} \pm \frac{\omega_o}{2Q}$	$\omega_o \sqrt{1 + \left(\frac{1}{2Q}\right)^2} \pm \frac{\omega_o}{2Q}$
$Q \ge 10, \omega_{1,} \omega_{2}$	$\omega_o \pm \frac{\mathrm{B}}{2}$	$\omega_o \pm \frac{\mathrm{B}}{2}$

14.5 Passive Filters (1)

- <u>A filter</u> is a circuit that is designed to pass signals with desired frequencies and reject or attenuate others.
- Passive filter consists of only passive element R, L and C.
- There are four types of filters.

For the circuit in the figure below, obtain the transfer function Vo(ω)/Vi(ω). Identify the type of filter the circuit represents and determine the corner frequency. Take R1=100 Ω =R2 and L =2mH.

$$H(\omega) = \frac{V_{0}}{V_{1}} = \frac{Z_{L} / R_{2}}{R_{1} + Z_{L} / R_{2}}$$

$$= \frac{j \omega L R_{2}}{j \omega L + R_{2}} (j \omega L R_{2})$$

$$= \frac{j \omega L R_{2}}{(R_{1} + \frac{j \omega L R_{2}}{j \omega L + R_{2}})} (j \omega L R_{2}) = \frac{j \omega L R_{2}}{(j \omega L R_{1} + R_{1} R_{2} + j \omega L R_{2})} (j \omega L R_{2} + R_{1} R_{2} + j \omega L R_{2}) / j \omega L$$

$$= \frac{R_{2}}{R_{1} + R_{2}} = \frac{R_{2}}{R_{1} + R_{2}} = \frac{R_{2}}{R_{1} + R_{2}} - \frac{j R_{1} R_{2}}{\omega L}$$

$$H(\omega) = 0, \quad H(\omega) = \frac{R_{2}}{R_{1} + R_{2}} - \frac{j R_{1} R_{2}}{\omega L}$$

$$H(\omega) = 0, \quad H(\omega) = \frac{R_{2}}{R_{1} + R_{2}} - \frac{K_{1} R_{2}}{\omega L} = \frac{(1\omega)(\omega)}{(\omega)} = 25, 000 \text{ M/s}$$

$$R_{1} + R_{2} = \frac{R_{1} R_{2}}{\omega_{L}} - 5 \omega_{2} = \frac{R_{1} R_{2}}{(R_{1} + R_{1})L} = \frac{(1\omega)(\omega)}{(\omega)} = 25, 000 \text{ M/s}$$

$$R_{1} = \frac{R_{2}}{R_{1} + R_{2}} - \frac{R_{1} R_{2}}{\omega_{L}} - \frac{R_{1} R_{2}}{(R_{1} + R_{1})L} = \frac{R_{2}}{(2\omega)(\omega)} = 25, 000 \text{ M/s}$$

EXAMPLE 8) a) Find the transfer function $H(\omega)=Vout/Vin$

b) At what frequency will the magnitude of $H(\omega)$ be maximum and what is the maximum value of the magnitude of $H(\omega)$?

c) At what frequency will the magnitude of $H(\omega)$ be minimum and what is the minimum value of the magnitude of $H(\omega)$?

a) $H(\omega) = -45455/(j\omega+4545.5)$ 29 b) Hmax=10 as $\omega=0$ rad/s c) Hmin=0 as ω goes to infinity.

HANDOUTS

For the RC circuit shown below, obtain the transfer function Vo/Vs and its frequency response. Let $v_s = V_m cos\omega t$.

Ex3) Find the transfer function $H(\omega)=V_{out}/V_{in}$. What type of filter is it?

H(w)=1000/(jw+11000), Lowpass figter

Magnitude of H(w)

Phase of H(w)

Plot in Matlab:

```
w = [1:100:1e6];
H = 1000./(j*w+11000)
plot(w, abs(H) )
```

semilogx(w,angle(H)*180/pi) phase

Ex 4)Find the cutoff frequency of the filter. Use voltage divider to derive the transfer function. Obtain the output voltage in s.s.s when the input voltage is $V_{in}=1cos(100t)$ V and $V_{in}=1cos(10,000t+90^{\circ})$ V.

A series-connected circuit has R = 4 Ω

- and L = 25 mH.
 - a. Calculate the value of C that will produce a quality factor of 50.
 - b. Find ω_1 and ω_2 , and B.
 - c. Determine the average power dissipated at $\omega = \omega_0, \omega_1, \omega_2$.

Take $V_m = 100V$.

For the circuit in the figure below, obtain the transfer function $Vo(\omega)/Vi(\omega)$. Identify the type of filter the circuit represents and determine the corner frequency. Take $R1=100\Omega = R2$ and L = 2mH.

EXAMPLE 8) a) Find the transfer function $H(\omega)=Vout/Vin$ b) At what frequency will the magnitude of $H(\omega)$ be maximum and what is the maximum value of the magnitude of $H(\omega)$? c) At what frequency will the magnitude of $H(\omega)$ be minimum and what is the minimum

value of the magnitude of $H(\omega)$?

a) $H(\omega) = -45455/(j\omega+4545.5)$ b) Hmax=10 as $\omega=0$ rad/s c) Hmin=0 as ω goes to infinity.