Circuit Theory

Chapter 14

Frequency Response

Frequency Response Chapter 14

14.1 Introduction
14.2 Transfer Function
14.3 Series Resonance
14.4 Parallel Resonance
14.5 Passive Filters

14.1 Introduction (1)

What is FrequencyResponse of a Circuit?

It is the variation in a circuit's

behavior with change in signal frequency and may also be
considered as the variation of the gain

and phase with frequency.

http://en.wikipedia.org/wiki/Tacoma Narrows Bridge_(1940)
http://lpsa.swarthmore.edu/Analogs/ElectricalMechanicalAnalogs.html

14.2 Transfer Function (1)

- The transfer function $H(\omega)$ of a circuit is the frequency-dependent ratio of a phasor output $\underline{Y}(\underline{\omega})$ (an element voltage or current) to a phasor input $X(\underline{\omega})$ (source voltage or current).

$$
\mathrm{H}(\omega)=\frac{\mathrm{Y}(\omega)}{\mathrm{X}(\omega)}=|\mathrm{H}(\omega)| \angle \phi
$$

14.2 Transfer Function (2)

- Four possible transfer functions:

$$
\mathrm{H}(\omega)=\text { Voltage gain }=\frac{\mathrm{V}_{\mathrm{o}}(\omega)}{\mathrm{V}_{\mathrm{i}}(\omega)}
$$

$$
\mathrm{H}(\omega)=\text { Transfer Impedance }=\frac{\mathrm{V}_{\mathrm{o}}(\omega)}{\mathrm{I}_{\mathrm{i}}(\omega)}
$$

$$
\mathrm{H}(\omega)=\text { Current gain }=\frac{\mathrm{I}_{\mathrm{o}}(\omega)}{\mathrm{I}_{\mathrm{i}}(\omega)}
$$

$$
\mathrm{H}(\omega)=\text { Transfer Admittance }=\frac{\mathrm{I}_{\mathrm{o}}(\omega)}{\mathrm{V}_{\mathrm{i}}(\omega)}
$$

Example 1
For the RC circuit shown below, obtain the transfer function Vo/Vs and its frequency response. Let $\mathrm{v}_{\mathrm{s}}=\mathrm{V}_{\mathrm{m}} \cos \omega \mathrm{t}$.

Solution:
The transfer function is

$$
H(\omega)=\frac{V_{o}}{V_{s}}=\frac{\frac{1}{j \omega C}}{R+1 / j \omega C}=\frac{1}{1+j \omega R C}
$$

The magnitude is $|H(\omega)|=\frac{1}{\sqrt{1+\left(\omega / \omega_{o}\right)^{2}}}$
The phase is $\phi=-\tan ^{-1} \frac{\omega}{\omega_{o}}$

$$
\omega_{o}=1 / \mathrm{RC}
$$

Low Pass Filter

(b)

Example 2

Obtain the transfer function Vo/Vs of the RL circuit shown below, assuming $\mathrm{v}_{\mathrm{s}}=\mathrm{V}_{\mathrm{m}} \cos \omega \mathrm{t}$. Sketch its frequency response. R

$$
\begin{aligned}
& V_{0}=\frac{j \omega L}{R+j \omega L} V_{s} \\
& \left.H(\omega)=\frac{V_{0}}{V_{s}}=\frac{j \omega L / j \omega L}{(R+j \omega L) / j \omega L}=\frac{1}{1+\frac{R}{j \omega L}}\right\}^{v_{s}} \\
& \text { let } \omega_{0}=\frac{R}{L} \\
& \mapsto H(\omega)=\frac{1}{1-j \frac{\omega_{0}}{\omega}} \xrightarrow[\text { Form }]{\text { Polar }}=\frac{1}{\sqrt{1+\left(\frac{\omega_{0}}{\omega}\right)^{2}} \angle \tan ^{-1}\left(\frac{\omega_{0}}{\omega}\right)}=\frac{1}{\sqrt{1+\left(\frac{\omega_{0}}{\omega}\right)^{2}}}<\tan ^{-1}\left(\frac{\omega_{0}}{\omega}\right) \\
& =\left(\frac{1}{\sqrt{1+\left(\frac{\omega_{0}}{\omega}\right)^{2}}}\right)<90-\tan ^{-1}\left(\frac{\omega}{\omega_{0}}\right) \\
& H(0)=O \angle 90 \quad H 1 G H \text { PASS } \\
& H\left(\omega_{0}\right)=.707 \angle 45^{\circ} \\
& \text { FILTER } \\
& H(\infty)=1<0
\end{aligned}
$$

14.2 Transfer Function (6)

Solution:

The transfer function is

$$
H(\omega)=\frac{V_{o}}{V_{s}}=\frac{j \omega L}{R+j \omega L}=\frac{1}{1+\frac{R}{j \omega L}}
$$

The magnitude is

$$
\mathrm{H}(\omega)=\frac{1}{\sqrt{1+\left(\frac{\omega_{o}}{\omega}\right)^{2}}}
$$

The phase is $\phi=\angle 90^{\circ}-\tan ^{-1} \frac{\omega}{\omega_{o}}$
High Pass Filter

$$
\omega_{o}=\mathrm{R} / \mathrm{L}
$$

(a)
(b)

Ex) Find the transfer function $H(\omega)=V_{\text {out }} / V_{\text {in }}$. What type of filter is it?

$$
\begin{aligned}
& Z_{c}=\frac{1}{j \omega C}, Z_{p}=R_{2}\left(\frac{1}{j \omega C}\right)^{j \omega C} \\
& \left.Z_{p}=\frac{R_{2}}{1+j \omega R_{2} C} R_{2}+\frac{1}{j \omega C}\right)^{j \omega C} \\
& V_{\text {out }}=\frac{V_{1} Z_{p}}{R_{1}+Z_{p}} \Rightarrow H(\omega)=\frac{Z_{p}}{R_{1}+Z_{p}}=\frac{R_{1}}{\left(1+j \omega R_{2} C\right.}\left(1+\frac{R_{2}}{\left.1+j \omega R_{2} C\right)}\right)\left(1+j \omega R_{2} C\right) \\
& H(\omega)=\frac{R_{2}}{R_{1}+j \omega R_{1} R_{2} C+R_{2}}=\frac{1000}{11000+j \omega 10^{4} 10^{3} 10^{-7}}=\frac{1000}{11,000+j \omega} \\
& H(\omega)=1000 /(j \omega+11000), \text { Lowpass filler }
\end{aligned}
$$

Wolfram Alpha，add abs（ ）for mag

www．wolframalpha．com／input／？i＝plot＋abs\％281000\％2F\％28iw\％2B11000\％29\％29\％2C＋w\％2C＋0\％2C100000

```
plot abs(1000/(iw+11000)), w, 0,100000
囯-0-田-4

Assuming＂ 0 ＂is referring to math｜Use as a decimal number instead
Assuming i is the imaginary unit｜Use i as a variable instead

\section*{Input interpretation：}
\begin{tabular}{|c|c|c|}
\hline plot & \(\frac{1000}{|11000+i w|}\) & \(w=0\) to 100000 \\
\hline
\end{tabular}


\section*{Plotting phase in Wolfram}
www.wolframalpha.com/input/?i=plot+180\%2Fpi*arq\%281000\%2F\% \(28 \mathrm{iw} \% 2 \mathrm{~B} 11000 \% 29 \% 29 \% 2 \mathrm{C}+\) w\% \(2 \mathrm{C}+0 \% 2 \mathrm{C} 100\)


Assuming " 0 " is referring to math | Use as a decimal number instead
Assuming i is the imaginary unit | Use i as a variable instead

\section*{Input interpretation:}
\begin{tabular}{|l|l|l|}
\hline plot & \(\frac{180 \arg \left(\frac{1}{11000+i w}\right)}{\pi}\) & \(w=0\) to 100000 \\
\hline
\end{tabular}
\(\arg (z)\) is the complex argument »
\(i\) is the imaginary unit »


Magnitude of \(\mathrm{H}(\mathrm{w})\) （7）－がロ＋


Phase of \(\mathrm{H}(\mathrm{w})\) －\()^{2} \oplus+\)


Plot in Matlab：
\[
\begin{aligned}
& w=[1: 100: 1 \mathrm{e} 6] ; \\
& H=1000 . /\left(j^{*} \mathrm{w}+11000\right) \\
& \operatorname{plot}(\mathrm{w}, \operatorname{abs}(\mathrm{H})) \\
& \text { semilog } x(\mathrm{w}, \mathrm{abs}(\mathrm{H})) \quad \leftarrow \text { magnitude } \\
& \text { semilog } x(\mathrm{w} \text {, angle }(\mathrm{H}) * 180 / \text { pi }) \leftarrow \text { phase }
\end{aligned}
\]

Find wo for
\[
\begin{gathered}
H(\omega)=\frac{1000}{(11,000+j \omega) / 11,000} \\
H(\omega)=\frac{1 / 11}{1+\frac{j \omega}{11000}}=\frac{.0909}{1+j \frac{\omega}{\omega_{0}}} \\
\omega_{0}=11,000
\end{gathered}
\]
\(w_{0}\) is freq at which real and imaginary parts hove same magnitude．
\[
|H(0)|=.0909 \quad\left|H\left(w_{0}\right)\right|=\frac{.0909}{\sqrt{2}}=\begin{array}{r}
.064 \\
14
\end{array}
\]

Ex 4) Use the Inverting Op-Amp formula to derive the transfer function. Find the cutoff frequency of the filter. Obtain the output voltage in s.s.s. when the input voltage is \(\mathrm{V}_{\mathrm{in}}=1 \cos (100 \mathrm{t}) \mathrm{V}\) and
\[
V_{\text {in }}=1 \cos \left(10,000 t+90^{\circ}\right) \mathrm{V} .
\]
\[
Z_{f}=R
\]

Inverting op-Amp
\[
\begin{aligned}
& G_{\text {ain }}=\frac{V_{\text {out }}}{V_{\text {in }}}=H(w)=\frac{-Z_{f}}{Z_{s}} \\
& H(\omega)=\frac{-R / R}{(R+1 / j \omega C) / R}=\frac{-1}{1+\frac{1}{j \omega R C}} \\
& \omega_{0}=\frac{1}{R C}=\frac{1}{\left(10^{3}\right)\left(10^{-7}\right)}=10^{4} \mathrm{Rad} / \mathrm{s} \\
& \text { at } \omega=100 \mathrm{Rad} / \mathrm{s} \\
& \begin{array}{l}
\mathbb{V}_{\text {in }}=1<0 \rightarrow \mathbb{V}_{\text {out }}=V_{\text {in }} H(100)=\frac{1<0}{j\left(\frac{10^{4}}{10^{2}}\right)-1}=\frac{1}{j 100-1} \approx \frac{-j}{100} \\
\therefore V_{\text {out }}(t)=.01 \cos \left(100 t-90^{\circ}\right)
\end{array} \\
& \sum \\
& \begin{array}{l}
\text { at } \omega=10^{4} \mathrm{R} / \mathrm{s} \quad V_{\text {in }}=1 \angle 90^{\circ} \rightarrow V_{\text {out }}=\frac{1 \angle 90^{\circ}}{j\left(\frac{104}{10^{4}}\right)-1}=\frac{1 \angle 90^{\circ}}{\sqrt{2} \angle 135^{\circ}}=.707 \angle-45^{\circ} .70 \cos \left(10^{4} t-45^{\circ}\right) \\
\therefore V_{\text {out }}(t)=.707
\end{array} \\
& \therefore \operatorname{Vout~}(t)=.707 \cos \left(10^{4} t-45^{\circ}\right)
\end{aligned}
\]

\title{
\[
w=[1: 100: 1 e 6] ;
\] \\ \[
H=1 . /\left(j^{*}(10000 . / w)-1\right) ;
\] \\ semilogx(w,abs(H))
}
magnitude
File Tools


14.3 Series Resonance (1)

Resonance is a condition in an RLC circuit in which the capacitive and inductive reactance are equal in magnitude, thereby resulting in purely resistive impedance.

\[
z=R+j\left(\omega L-\frac{1}{\omega c}\right)
\]

Resonance frequency:
when \(\omega_{0} L=\frac{1}{\omega_{0} C}\)
or \(\omega_{0}=\frac{1}{\sqrt{L C}}\)
\[
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
\]

\subsection*{14.3 Series Resonance (2) \()_{v_{c}}\)}

The features of series resonance:


The impedance is purely resistive, \(Z=R\);
- The supply voltage Vs and the current I age in phase, so \(\cos \theta=1\); (power tractor angle \(=0\) )
- The magnitude of the impedance \(Z(\omega)\) is minimum;
- The inductor voltage and capacitor voltage can be much more than the source voltage. \(180^{\circ}\) out of phase so cancel out

\subsection*{14.3 Series Resonance (3)}

\section*{Bandwidth B}

The frequency response of the
 resonance circuit current is
\[
\mathrm{Z}=\mathrm{R}+\mathrm{j}\left(\omega \mathrm{~L}-\frac{1}{\omega \mathrm{C}}\right)
\]
\[
\mathrm{I}=|\mathrm{I}|=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{\mathrm{R}^{2}+(\omega \mathrm{L}-1 / \omega \mathrm{C})^{2}}}
\]

The average power absorbed by the RLC circuit is
\[
\mathrm{P}(\omega)=\frac{1}{2} \mathrm{I}^{2} \mathrm{R}
\]


The highest power dissipated occurs at resonance:
\[
\mathrm{P}\left(\omega_{o}\right)=\frac{1}{2} \frac{\mathrm{~V}_{\mathrm{m}}^{2}}{\mathrm{R}}
\]

\section*{143 Series Resonance (4)}

Half-power frequencies \(\omega_{1}\) and \(\omega_{2}\) are frequencies at which the dissipated power is half the maximum value:
\[
\mathrm{P}\left(\omega_{1}\right)=\mathrm{P}\left(\omega_{2}\right)=\frac{1}{2} \frac{\left(\mathrm{~V}_{\mathrm{m}} / \sqrt{2}\right)^{2}}{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{m}}^{2}}{4 \mathrm{R}}
\]

The half-power frequencies can be obtained by setting \(|Z|=R+j\left(\omega-\frac{1}{\omega}\right)\) equal to \(\sqrt{ } 2 R\) : \(\omega L-\frac{1}{\omega C}=R, \omega^{2}-\frac{R}{L} \omega-\frac{1}{L C}=0\)
\[
\omega_{1}=-\frac{\mathrm{R}}{2 \mathrm{~L}}+\sqrt{\left(\frac{\mathrm{R}}{2 \mathrm{~L}}\right)^{2}+\frac{1}{\mathrm{LC}}} \quad \omega_{2}=\frac{\mathrm{R}}{2 \mathrm{~L}}+\sqrt{\left(\frac{\mathrm{R}}{2 \mathrm{~L}}\right)^{2}+\frac{1}{\mathrm{LC}}}
\]
\[
\omega_{o}=\sqrt{\omega_{1} \omega_{2}}
\]

Bandwidth B
\[
\mathrm{B}=\omega_{2}-\omega_{1}
\]


\subsection*{14.3 Series Resonance (5)}

Quality factor, \(\mathrm{Q}=\frac{\text { Peak energy stored in the circuit }}{\text { Energy dissipated by thecircuit }}=\frac{\omega_{o} \mathrm{~L}}{\mathrm{R}}=\frac{1}{\omega_{o} \mathrm{CR}}\) in one period at resonance

The relationship between the \(\mathrm{B}, \mathrm{Q}\) and \(\omega_{0}\) :
\[
\begin{aligned}
& \mathrm{B}=\frac{\mathrm{R}}{\mathrm{~L}}=\frac{\omega_{o}}{\mathrm{Q}}=\omega_{0}^{2} \mathrm{CR} \\
& \mathrm{Q}=\frac{\omega_{o}}{\mathrm{~B}}
\end{aligned}
\]
- The quality factor is the ratio of its resonant frequency to its bandwidth.
- If the bandwidth is narrow, the quality factor of the resonant circuit must be high.
- If the band of frequencies is wide, the quality factor must be low.


Example 5
A series-connected circuit has \(\mathrm{R}=4 \Omega\) and \(\mathrm{L}=25 \mathrm{mH}\).
a. Calculate the value of \(C\) that will produce a quality factor of 50.
b. Find \(\omega_{1}\) and \(\omega_{2}\), and \(B\).
c. Determine the average power dissipated at \(\omega=\omega_{0}, \omega_{1}, \omega_{2}\).
a)
\[
\begin{aligned}
& \text { Take } V_{m}=100 \mathrm{~V} . \\
& Q=\frac{\omega_{0} L}{R}=\frac{1}{\omega_{0} C R}=50 \rightarrow \omega_{0}=50\left(\frac{R}{L}\right)=50\left(\frac{4}{.025}\right)=8000 \\
& \text { then } C=\frac{1}{Q \omega_{0} R}=\frac{1}{(50)(8000)(4)}=.625 \mu \mathrm{~F}
\end{aligned}
\]
b)
\[
\begin{aligned}
& B=\frac{R}{L}=\frac{4}{.025}=160 R / s \\
& \omega_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}=-\frac{4}{.05}+\sqrt{\left(\frac{4}{1.05}\right)^{2}+\frac{1}{(.025)\left(.625 \times 10^{-7}\right)}}=
\end{aligned}
\]
\[
=-80+8000.4=\frac{7920 \mathrm{R} / \mathrm{s}}{2} \omega_{2}=+80+8000.4=\frac{8080 \mathrm{R} / \mathrm{s}}{2}
\]
c) \(P\left(\omega_{0}\right)=\frac{1}{2} \frac{V m^{2}}{R}=\frac{1}{2} \frac{(100)^{2}}{4}=1250 \omega \cdot P\left(\omega_{1}\right)=P\left(\omega_{2}\right)=625 \omega\)

\subsection*{14.4 Parallel Resonance (1)}

It occurs when imaginary part of \(Y\) is zero


Resonance frequency:

\[
\omega_{o}=\frac{1}{\sqrt{\mathrm{LC}}} \mathrm{rad} / \mathrm{s} \text { or } \mathrm{f}_{\mathrm{o}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \mathrm{~Hz}
\]

\subsection*{14.4 Parallel Resonance (2)}

Summary of series and parallel resonance circuits:
\begin{tabular}{|c|c|c|}
\hline characteristic & Series circuit & Parallel circuit \\
\hline\(\omega_{0}\) & \(\frac{1}{\sqrt{\mathrm{LC}}}\) & \(\frac{1}{\sqrt{\mathrm{LC}}}\) \\
\hline \(\mathbf{Q}\) & \(\frac{\omega_{o} \mathrm{~L}}{\mathrm{R}}\) or \(\frac{1}{\omega_{o} \mathrm{RC}}\) & \(\frac{\mathrm{R}}{\omega_{o} \mathrm{~L}}\) or \(\omega_{o} \mathrm{RC}\) \\
\hline \(\mathbf{B}\) & \(\frac{\omega_{o}}{\mathrm{Q}}\) & \(\frac{\omega_{o}}{\mathrm{Q}}\) \\
\hline\(\omega_{1,} \omega_{2}\) & \(\omega_{o} \sqrt{1+\left(\frac{1}{2 \mathrm{Q}}\right)^{2}} \pm \frac{\omega_{o}}{2 \mathrm{Q}}\) & \(\omega_{o} \sqrt{1+\left(\frac{1}{2 \mathrm{Q}}\right)^{2}} \pm \frac{\omega_{o}}{2 \mathrm{Q}}\) \\
\hline \(\mathbf{Q} \geq \mathbf{1 0}, \omega_{1}, \omega_{2}\) & \(\omega_{o} \pm \frac{\mathrm{B}}{2}\) & \(\omega_{o} \pm \frac{\mathrm{B}}{2}\) \\
\hline
\end{tabular}

Example 6 (OPTIONAL)
A parallel resonant circuit has \(R=100 \mathrm{kOhm}, \mathrm{L}=20 \mathrm{mH}\), and \(C=5 \mathrm{nF}\). Calculate wo, wi, w2, Q and B
\[
\begin{aligned}
& \begin{aligned}
\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{(02)\left(5 \times 10^{-9}\right)}}=100,000 \mathrm{R} / \mathrm{s} \\
Q=\frac{R}{\omega_{0} L}=\frac{100,000}{(100,000)(102)}=50
\end{aligned} \\
& \begin{aligned}
& \omega_{1}=\omega_{0} \sqrt{l+\left(\frac{1}{2 Q}\right)^{2}}-\frac{\omega_{0}}{2 Q}=100,000 \sqrt{1+\left(\frac{1}{100}\right)^{2}}-\frac{100000}{100} \\
&=100,000 \sqrt{1.00005}-1000 \\
&=99,000 \mathrm{R} / \mathrm{s} \\
& \omega_{2}==101,000 \mathrm{R} / \mathrm{s} \\
& \omega_{2}
\end{aligned} \\
& \begin{aligned}
B=\frac{\omega_{0}}{2 Q} & =j \omega L
\end{aligned}
\end{aligned}
\]

\subsection*{14.5 Passive Filters (1)}
- A filter is a circuit that is designed to pass signals with desired frequencies and reject or attenuate others.
- Passive filter consists of only passive element R , L and C .
- There are four types of filters.


Example 7
For the circuit in the figure below, obtain the transfer function \(\mathrm{Vo}(\omega) / \mathrm{Vi}(\omega)\). Identify the type of filter the circuit represents and determine the corner frequency. Take \(R 1=100 \Omega=R 2\) and \(L=2 \mathrm{mH}\).
\[
\begin{aligned}
& H(\omega)=\frac{V_{0}}{V_{i}}=\frac{z_{L} \| R_{2}}{R_{1}+z_{1} \| R_{2}} \\
& =\frac{j \omega L R_{2}}{j \omega L+R_{2}}\left(j \omega L+R_{2}\right) \\
& v_{i}(t) \stackrel{+}{\square} \\
& \frac{j \omega L+R_{2}}{\left(R_{1}+\frac{j \omega L R_{2}}{j \omega L+R_{2}}\right)\left(j \omega L+R_{2}\right)}=\frac{j \omega L R_{2} /(j \omega L)}{\left(j \omega L R_{1}+R_{1} R_{2}+j \omega L R_{2}\right) / j \omega L} \\
& =\frac{R_{2}}{R_{1}+R_{2}+\frac{R_{1} R_{2}}{j \omega L}}=\frac{R_{2}}{R_{1}+R_{2}-\frac{j R_{1} R_{2}}{\omega L}} \\
& H(0)=0, H(\infty)=\frac{R_{2}}{R_{1}+R_{2}} \rightarrow H \text { tiL Pass FILTER } \\
& \text { Corner Freq when } \quad R_{1}+R_{2}=\frac{R_{1} R_{2}}{\omega_{1} L} \rightarrow \omega_{c}=\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right) L}=\frac{(100)(100)}{(200)(.002)}=25,000 \mathrm{R} / \mathrm{s}
\end{aligned}
\]

EXAMPLE 8) a) Find the transfer function \(\mathrm{H}(\omega)=\) Vout/Vin
b) At what frequency will the magnitude of \(\mathrm{H}(\omega)\) be maximum and what is the maximum value of the magnitude of \(H(\omega)\) ?
c) At what frequency will the magnitude of \(\mathrm{H}(\omega)\) be minimum and what is the minimum value of the magnitude of \(H(\omega)\) ?
\[
=-\frac{45455}{j \omega+4545.5} \quad \begin{array}{ll}
H_{\min }=0 \text { when } w \rightarrow \infty \\
& H_{\text {max }}=10 \text { when } w \rightarrow 0
\end{array}
\]
b) \(H \max =10\) as \(\omega=0 \mathrm{rad} / \mathrm{s}\)
c) \(H m i n=0\) as \(\omega\) goes to infinity.
\[
\begin{aligned}
& H(\omega)=\frac{V_{\text {out }}}{V_{i n}}=-\frac{z f}{z_{s}}=\frac{-R_{2} \| \frac{1}{j \omega c}}{R_{1}} \\
& H\left(\frac{R_{i n}}{j \omega L} \frac{R_{2}+1 / j \omega c}{R_{2}}=-\frac{1}{R_{1}}=\frac{R_{1}}{R_{1}+\frac{R_{2}}{j \omega R_{1} R_{2} C}}=\frac{R_{2} / R_{1} R_{2} C}{j \omega+\frac{R_{1}}{R_{1} R_{2} C}}=\frac{1}{(1000)\left(.022 \times 10^{-6}\right)}\right.
\end{aligned}
\]

\section*{HANDOUTS}

For the RC circuit shown below, obtain the transfer function Vo/Vs and its frequency response. Let \(\mathrm{v}_{\mathrm{s}}=\mathrm{V}_{\mathrm{m}} \cos \omega \mathrm{t}\).

(a)

(b)

\section*{Example 2}

Obtain the transfer function \(\mathrm{Vo} / \mathrm{Vs}\) of the RL circuit shown below,
assuming \(\mathrm{v}_{\mathrm{s}}=\mathrm{V}_{\mathrm{m}} \cos \omega \mathrm{t}\). Sketch its frequency response.


\section*{Ex3) Find the transfer function \(\mathrm{H}(\omega)=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}\). What type of filter is it?}

\(H(w)=1000 /(j w+11000)\), Lowpass filter

Magnitude of \(\mathrm{H}(\mathrm{w})\)


\section*{Phase of \(\mathrm{H}(\mathrm{w})\)}




Plot in Matlab:
```

w = [1:100:1e6];
H=1000./(j*w+11000)
plot(w, abs(H))

```
semilog \(x(w, \operatorname{abs}(H)) \leftarrow\) magnitude semilogx \((\mathrm{w}\), angle \((\mathrm{H}) * 180 /\) pi \() \leftarrow\) phase

Ex 4)Find the cutoff frequency of the filter. Use voltage divider to derive the transfer function. Obtain the output voltage in s.s.s when the input voltage is \(\mathrm{V}_{\text {in }}=1 \cos (100 \mathrm{t}) \mathrm{V}\) and \(\mathrm{V}_{\text {in }}=1 \cos \left(10,000 \mathrm{t}+90^{\circ}\right) \mathrm{V}\).


\section*{Example 5}

A series-connected circuit has \(\mathrm{R}=4 \Omega\)
and \(\mathrm{L}=25 \mathrm{mH}\).
a. Calculate the value of \(C\) that will produce a quality factor of 50.
b. Find \(\omega_{1}\) and \(\omega_{2}\), and \(B\).
c. Determine the average power dissipated at \(\omega=\omega_{0}, \omega_{1}, \omega_{2}\). Take \(\mathrm{V}_{\mathrm{m}}=100 \mathrm{~V}\).

\section*{Example 7}

For the circuit in the figure below, obtain the transfer function \(\operatorname{Vo}(\omega) / \mathrm{Vi}(\omega)\). Identify the type of filter the circuit represents and determine the corner frequency. Take \(\mathrm{R} 1=100 \Omega=\mathrm{R} 2\) and \(\mathrm{L}=2 \mathrm{mH}\).


EXAMPLE 8) a) Find the transfer function \(H(\omega)=\) Vout/Vin
b) At what frequency will the magnitude of \(\mathrm{H}(\omega)\) be maximum and what is the maximum value of the magnitude of \(\mathrm{H}(\omega)\) ?
c) At what frequency will the magnitude of \(\mathrm{H}(\omega)\) be minimum and what is the minimum value of the magnitude of \(H(\omega)\) ?

a) \(H(\omega)=-45455 /(j \omega+4545.5)\)
b) \(H\) max \(=10\) as \(\omega=0 \mathrm{rad} / \mathrm{s}\)
c) Hmin=0 as \(\omega\) goes to infinity.```

