EE2003
 Circuit Theory

Chapter 12

 Three-Phase CircuitCopyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PRODUCTS \quad RESOURCES \quad SERVICES \quad WORLDWIDE \quad REPAIR PARTS | Enter keyword or part number |
| :--- |

Motors＞General Purpose AC Motors＞General Purpose AC Motors

MARATHON ELECTRIC

Mtr， 3 Ph， $1 / 2 \mathrm{hp}, 1725,208-230 / 460$ ，Eff 76.1

Share This Product
General Purpose Motor，3－Phase， $1 / 2$ HP，Nameplate RPM 1725，Voltage 208－230／460，56C Frame，Totally Enclosed Fan－Cooled， Number of Speeds 1，Full Load Amps 2．1－2．2／1．1， $60 / 50 \mathrm{~Hz}$ ，Face Mounting，Thermal Protection None，Insulation Class B，Service Factor 1．25Max．Ambient Temp． 40 Degrees C，Rotation CW／CCW，Overall Length 10－15／16 In．，Shaft Dia．5／8 In．，Shaft Length 1－7／8 In．

Grainger Item \＃	3N687
Price（ea．）	\＄273．75
Brand	MARATHON ELECTRIC
Mfr．Model \＃	5 K 35 MNB 114 A
UNSPSC \＃	26101612
Ship Qty．？	1
Sell Qty．（Will－Call）？	1
Ship Weight（lbs．）	18.4
Availability	Typically in Stock ？
Catalog Page No．	18 回
Country of Origin （Country of Origin is subject to change．）	Mexico

Enlarge Image

Mtr， 3 P

Qty． \square

Three-Phase Circuits Chapter 12

12.1 What is a Three-Phase Circuit?
12.2 Balance Three-Phase Voltages
12.3 Balance Three-Phase Connection
12.4 Power in a Balanced System
12.5 Unbalanced Three-Phase Systems
12.6 Application - Residential Wiring

12.1 What is a Three-Phase Circuit?(1)

- It is a system produced by a generator consisting of three sources having the same amplitude and frequency but out of phase with each other by 120°.

12.1 What is a Three-Phase Circuit?(2)

Advantages:

1. Most electric power is generated and distributed in three-phase.
2. The instantaneous power in a three-phase system can be constant.
3. Given the same amount of power, a three-phase system is more economical than single-phase.
4. In fact, the amount of wire required for a threephase system is less than that required for an equivalent single-phase system.

Balanced Three-phase Voltages

Three-phase four-wire system

A Three-phase Generator

Threephase b output

Voltages having 120° phase difference

12.2 Balance Three-Phase Voltages (2)

- Two possible configurations:

Three-phase voltage sources: (a) Y-connected ; (b) Δ-connected

12.2 Balance Three-Phase Voltages (3)

- Balanced phase voltages are equal in magnitude and are out of phase with each other by 120°.
- The phase sequence is the time order in which the voltages pass through their respective maximum values.
- A balanced load is one in which the phase impedances are equal in magnitude and in phase

Example 1

Determine the phase sequence of the set of voltages.

$$
\begin{aligned}
& v_{a n}=200 \cos \left(\omega t+10^{\circ}\right) \\
& v_{b n}=200 \cos \left(\omega t-230^{\circ}\right) \\
& v_{c n}=200 \cos \left(\omega t-110^{\circ}\right)
\end{aligned}
$$

12.2 Balance Three-Phase Voltages (5)

Solution:

The voltages can be expressed in phasor form as

$$
\begin{aligned}
\mathrm{V}_{a n} & =200 \angle 10^{\circ} \mathrm{V} \\
\mathrm{~V}_{b n} & =200 \angle-230^{\circ} \mathrm{V} \\
\mathrm{~V}_{c n} & =200 \angle-110^{\circ} \mathrm{V}
\end{aligned}
$$

We notice that $\mathbf{V}_{\text {an }}$ leads $\mathbf{V}_{\text {cn }}$ by 120° and $\mathbf{V}_{\text {cn }}$ in turn leads $\mathbf{V}_{\text {bn }}$ by 120°.

Hence, we have an acb sequence.

12.3 Balance Three-Phase Connection (1)

- Four possible connections

1. $Y-Y$ connection (Y-connected source with a Y-connected load)
2. Y - Δ connection (Y-connected source with a Δ-connected load)
3. $\Delta-\Delta$ connection
4. $\Delta-Y$ connection

12.3 Balance Three-Phase Connection (2)

- A balanced $Y-Y$ system is a three-phase system with a balanced y-connected source and a balanced y-connected load.

$$
\begin{aligned}
& V_{L}=\sqrt{3} V_{p} \text {, where } \\
& V_{p}=\left|\mathrm{V}_{a n}\right|=\left|\mathrm{V}_{b n}\right|=\left|\mathrm{V}_{c n}\right| \\
& V_{L}=\left|\mathrm{V}_{a b}\right|=\left|\mathrm{V}_{b c}\right|=\left|\mathrm{V}_{c a}\right|
\end{aligned}
$$

Balanced Wye-wye Connection

> Phasor diagram of phase and line voltages

$$
\begin{aligned}
V_{L} & =\left|V_{a b}\right|=\left|V_{b c}\right|=\left|V_{c a}\right| \\
& =\sqrt{3}\left|V_{a n}\right|=\sqrt{3}\left|V_{b n}\right|=\sqrt{3}\left|V_{c n}\right|=\sqrt{3} V_{p}
\end{aligned}
$$

$$
V_{p}=\left|V_{a n}\right|=\left|V_{b n}\right|=\left|V_{c n}\right|
$$

Single Phase Equivalent of Balanced Y-У Connection

$>$ Balanced three phase circuits can be analyzed on "per phase " basis.
$>$ We look at one phase, say phase a and analyze the single phase equivalent circuit.
$>$ Because the circuit is balanced, we can easily obtain other phase values using their phase relationships.

Example 2

Calculate the line currents in the three-wire $\mathrm{Y}-\mathrm{Y}$

 system shown below:

$$
\text { 110*ang }(0) /(5-2 j+10+8 j)=6.809<-21.80
$$

Ans
$\mathrm{I}_{a}=6.81 \angle-21.8^{\circ} \mathrm{A}$
$\mathrm{I}_{b}=6.81 \angle-141.8^{\circ} \mathrm{A}$
$\mathrm{I}_{c}=6.81 \angle 98.2^{\circ} \mathrm{A}$

12.3 Balance Three-Phase Connection (4)

- A balanced $Y-\Delta$ system is a three-phase system with a balanced y-connected source and a balanced Δ-connected load.

$$
\begin{gathered}
I_{L}=\sqrt{3} I_{p} \text {, where } \\
I_{L}=\left|\mathrm{I}_{a}\right|=\left|\mathrm{I}_{b}\right|=\left|\mathrm{I}_{c}\right| \\
I_{p}=\left|\mathrm{I}_{A B}\right|=\left|\mathrm{I}_{B C}\right|=\left|\mathrm{I}_{C A}\right|
\end{gathered}
$$

Example 3
A balanced $a b c$-sequence Y-connected source with
($\mathrm{V}_{\mathrm{an}}=100 \angle 10^{\circ}$) is connected to a Δ-connected load $(8+\mathrm{j} 4) \Omega$ per phase. Calculate the phase and line currents.

Solution

$$
\begin{aligned}
& \operatorname{Van}=100 * \text { ang (10) } \\
& \mathrm{Vbn}=100 * \text { ang (10-120) } \\
& \text { Vcn }=100 * \text { ang }(10+120) \\
& \operatorname{Vab}=\operatorname{Van}-\operatorname{Vbn}=173.205<40.00 \\
& \mathrm{Vbc}=\mathrm{Vbn}-\mathrm{Vcn}=173.205<-80.00 \\
& \text { Vca }=\text { Vcn }-\operatorname{Van}=173.205<160.00 \\
& \text { Iab }=\text { Vab/ }(8+4 j) \quad=19.365<13.43 \\
& \text { Ica }=\mathrm{Vca} /(8+4 \mathrm{j}) \quad=19.365<133.43 \\
& I a=I a b-I c a) \quad=33.541<-16.57 \\
& \mathrm{I}_{a}=\frac{\mathrm{V}_{\mathrm{an}}}{\mathrm{Z}_{\Delta} / 3}=\frac{100 \angle 10^{\circ}}{2.981 \angle 26.57^{\circ}}=33.54 \angle-16.57^{\circ} \mathrm{A}
\end{aligned}
$$

Other line currents are obtained using the abc phase sequence

12.3 Balance Three-Phase Connection (6)

- A balanced $\Delta-\Delta$ system is a three-phase system with a balanced Δ-connected source and a balanced Δ-connected load.

Example 4

A balanced Δ-connected load having an impedance 20$j 15 \Omega$ is connected to a Δ-connected positive-sequence generator having ($\mathrm{V}_{\mathrm{ab}}=330 \angle 0^{\circ} \mathrm{V}$). Calculate the phase currents of the load and the line currents.

Ans:

$$
\begin{array}{ll}
\text { Iab }=110 * \text { ang }(0) /(5-2 j+10+8 j) & =13.200<36.87 \\
\text { Ibc }= & =13.200<-81.13 \\
\text { Ica }= & =13.200<156.87 \\
& \\
\text { Ia }=\text { Iab }- \text { Ica } & =22.86<6.87
\end{array}
$$

$$
\mathrm{I}_{A B}=13.2 \angle 36.87^{\circ} \mathrm{A} ; \mathrm{I}_{B C}=13.2 \angle-81.13^{\circ} \mathrm{A} ; \mathrm{I}_{A B}=13.2 \angle 156.87^{\circ} \mathrm{A}
$$

$$
\mathrm{I}_{a}=22.86 \angle 6.87^{\circ} \mathrm{A} ; \mathrm{I}_{b}=22.86 \angle-113.13^{\circ} \mathrm{A} ; \mathrm{I}_{c}=22.86 \angle 126.87^{\circ} \mathrm{A}
$$

12.3 Balance Three-Phase Connection (8)

- A balanced $\Delta-Y$ system is a three-phase system with a balanced y-connected source and a balanced y-connected load.

12.3 Balanced Three-Phase Connection (9)

Example 5
A balanced Y -connected load with a phase impedance $40+\mathrm{j} 25 \Omega$ is supplied by a balanced, positive-sequence Δ-connected source with a line voltage of 210 V . Calculate the phase currents. Use V_{ab} as reference.

Answer

$$
\begin{aligned}
& \mathrm{I}_{A N}=2.57 \angle-62^{\circ} \mathrm{A} ; \\
& \mathrm{I}_{B N}=2.57 \angle-178^{\circ} \mathrm{A} ; \\
& \mathrm{I}_{C N}=2.57 \angle 58^{\circ} \mathrm{A} ;
\end{aligned}
$$

The phase currents $\quad \mathrm{I}_{B N}=2.57 \angle-178^{\circ} \mathrm{A}$;

12.4 Power in a Balanced System (1)

- Comparing the power loss in (a) a single-phase system, and (b) a three-phase system

Transmission lines
(a)

$$
P_{\text {loss }}^{\prime}=2 R \frac{P_{L}^{2}}{V_{L}^{2}} \text {, single - phase }
$$

Transmission lines
(b)

$$
P_{\text {loss }}^{\prime}=R^{\prime} \frac{P_{L}^{2}}{V_{L}^{2}} \text {, three-phase }
$$

- If same power loss is tolerated in both system, three-phase system use only 75% of materials of a single-phase system

12.5 Unbalanced Three-Phase Systems (1)

- An unbalanced system is due to unbalanced voltage sources or an unbalanced load.

- To calculate power in an unbalanced three-phase system requires that we find the power in each phase.
- The total power is not simply three times the power in one phase but the sum of the powers in the three phases.

12.3 Unbalanced Three-Phase Systems (2)

Example 6

Determine the total average power, reactive power, and complex power at the source and at the load

*Refer to in-class illustration, textbook

Ans
At the source:
$S_{s}=-(2087+j 834.6) V A$
$P_{a}=-2087 \mathrm{~W}$
$P_{r}=-834.6 V A R$
At the load:
$S_{\mathrm{L}}=(1392+j 1113) \mathrm{VA}$
$\mathrm{P}_{\mathrm{a}}=1392 \mathrm{~W}$
$\mathrm{P}_{\mathrm{r}}=1113 \mathrm{VAR}$

12.6 Application - Residential Wiring (1)

A 120/240 household power system

12.6 Application - Residential Wiring (2)

Single-phase three-wire residential wiring

12.6 Application - Residential Wiring (3)

A typical wiring diagram of a room

General Delta to Wye conversion

Delta to Wye

$$
\begin{aligned}
& R_{1}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}} \\
& R_{2}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}} \\
& R_{3}=\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} .
\end{aligned}
$$

Wye to Delta

$$
\begin{aligned}
& R_{1}=\frac{R_{b} R_{a}}{R_{T}} \\
& R_{2}=\frac{R_{b} R_{c}}{R_{T}} \\
& R_{3}=\frac{R_{a} R_{c}}{R_{T}}
\end{aligned}
$$

where $R_{T}=R_{a}+R_{b}+R_{c}$
works the same way for complex impedances

HANDOUTS

Example 1

Determine the phase sequence of the set of voltages.

$$
\begin{aligned}
& v_{a n}=200 \cos \left(\omega t+10^{\circ}\right) \\
& v_{b n}=200 \cos \left(\omega t-230^{\circ}\right) \\
& v_{c n}=200 \cos \left(\omega t-110^{\circ}\right)
\end{aligned}
$$

Example 2

Calculate the line currents in the three-wire Y-Y system shown below:

Ans
$\mathrm{I}_{a}=6.81 \angle-21.8^{\circ} \mathrm{A}$
$\mathrm{I}_{b}=6.81 \angle-141.8^{\circ} \mathrm{A}$
31
$\mathrm{I}_{c}=6.81 \angle 98.2^{\circ} \mathrm{A}$

Example 3

A balanced $a b c$-sequence Y-connected source with ($\mathrm{V}_{\mathrm{an}}=100 \angle 10^{\circ}$) is connected to a Δ-connected load $(8+\mathrm{j} 4) \Omega$ per phase. Calculate the phase and line currents.

Solution

$$
\mathrm{I}_{a}=\frac{\mathrm{V}_{\mathrm{an}}}{\mathrm{Z}_{\Delta} / 3}=\frac{100 \angle 10^{\circ}}{2.981 \angle 26.57^{\circ}}=33.54 \angle-16.57^{\circ} \mathrm{A}
$$

Other line currents are obtained using the $a b c$ phase sequence

Example 4

A balanced Δ-connected load having an impedance 20$j 15 \Omega$ is connected to a Δ-connected positive-sequence generator having ($\mathrm{V}_{\mathrm{ab}}=330 \angle 0^{\circ} \mathrm{V}$). Calculate the phase currents of the load and the line currents.

Ans:

$$
\begin{aligned}
& \mathrm{I}_{A B}=13.2 \angle 36.87^{\circ} \mathrm{A} ; \mathrm{I}_{B C}=13.2 \angle-81.13^{\circ} \mathrm{A} ; \mathrm{I}_{A B}=13.2 \angle 156.87^{\circ} \mathrm{A} \\
& \mathrm{I}_{a}=22.86 \angle 6.87^{\circ} \mathrm{A} ; \mathrm{I}_{b}=22.86 \angle-113.13^{\circ} \mathrm{A} ; \mathrm{I}_{c}=22.86 \angle 126.87^{\circ} \mathrm{A}
\end{aligned}
$$

