abc (positive) phase sequence: b phase lags a-phase by 120°, and cphase leads a-phase by 120°.

$$
\begin{aligned}
& \mathbf{V}_{a}=V_{m} / 0^{0} \\
& \mathbf{V}_{b}=V_{m} \underline{-120^{\circ}} \\
& \mathbf{V}_{c}=V_{m} \angle+120^{\circ}
\end{aligned}
$$

acb (negative) phase sequence:

$\mathbf{V}_{a}=V_{m} / 0^{0}$
$\mathbf{V}_{b}=V_{m} L+120^{\circ}$
$\mathbf{V}_{c}=V_{m}<-120^{\circ}$

Two Different Three-phase Source configurations:
Wye (or Y) Connected Source

Delta Source (for Load just reverse all currents):
Phase Voltages and Line Voltages are the same
Vab, Vbc, Vca are phase and line voltages
Phase Currents lab, Ibc, Ica
Line Currents la, lb, Ic
$(K C L:) l a=l a b-I c a=\sqrt{3} \operatorname{lab} /-30(a b c)$

$$
=\sqrt{3} \mathrm{lab} /+30(\mathrm{acb})
$$

Delta Currents - (abc) (acb)

Single Phase Equivalent

la = Van / Zy and all other Voltages and Currents found by using phase relationships above

Balanced Delta - Delta Connection

Balanced Wye - Delta Connection

Delta-Wye Conversions: using R below but Z works the same way:

| | $R_{1}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}:$ | $R_{1}=\frac{R_{b} R_{a}}{R_{T}}$ |
| :--- | :--- | :--- | :--- |
| $R_{2}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}:$ | $R_{2}=\frac{R_{b} R_{c}}{R_{T}}$ | |
| $R_{3}=\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}}$. | $R_{3}=\frac{R_{a} R_{c}}{R_{T}}$ | |
| where $R_{T}=R_{a}+R_{b}+R_{c}$ | | |

BALANCED: IF R1 $=\mathrm{R} 2=\mathrm{R} 3=\mathrm{RY}$ and $\mathrm{Ra}=\mathrm{Rb}=\mathrm{Rc}=\mathrm{R} \Delta$, then $\mathrm{R} \Delta=3 \mathrm{RY}$, and $\mathrm{RY}=\mathrm{R} \Delta / 3$

