EE2003
 Circuit Theory

Chapter 11 AC Power Analysis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

AC Power Analysis Chapter 11

11.1 Instantaneous and Average Power
11.2 Maximum Average Power Transfer
11.3 Effective or RMS Value
11.4 Apparent Power and Power Factor
11.5 Complex Power
11.6 Conservation of AC Power
11.7 Power Factor Correction
11.8 Power Measurement

Consider a typical AC circuit

 $\xrightarrow{i(t)}$

$$
\begin{aligned}
& v(t)=V_{m} \cos \left(\omega t+\theta_{v}\right) \\
& i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right)
\end{aligned}
$$

Then we can compute

$$
p(t)=v(t) i(t)=V_{m} I_{m} \cos \left(\omega t+\theta_{v}\right) \cos \left(\omega t+\theta_{i}\right)
$$

11.1 Instantaneous and Average Power (1)

- The instantaneous power, $\mathrm{p}(\mathrm{t})$

$$
\begin{aligned}
p(t) & =v(t) i(t)=V_{m} I_{m} \cos \left(\omega t+\theta_{v}\right) \cos \left(\omega t+\theta_{i}\right) \\
& =\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{1}{2} V_{m} I_{m} \cos \left(2 \omega t+\theta_{v}+\theta_{i}\right)
\end{aligned}
$$

Constant power Sinusoidal power at $2 \omega t$

$p(t)>0$: power is absorbed by the circuit; $p(t)<0$: power is absorbed by the source. ${ }_{4}$

11.1 Instantaneous and Average Power (2)

- The average power, P , is the average of the instantaneous power over one period.

Example 1
Calculate the instantaneous power and average power absorbed by a passive linear network if:

$$
\left.\begin{array}{rlrl}
P & =\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right) & \left.\begin{array}{l}
v(t)
\end{array}\right)=80 \cos \left(10 t+20^{\circ}\right) \\
& =\frac{1}{2}(80)(15) \cos (20--30) & i(t) & =15 \sin \left(10 t+60^{\circ}\right) \\
& =600 \cos \left(50^{\circ}\right) & & =15 \cos \left(10 t+60^{\circ}-90^{\circ}\right) \\
& =385.7 \quad \mathrm{~W}\left(10 t-30^{\circ}\right)
\end{array}\right] \begin{aligned}
P(t) & =385.7+600 \cos (20 t+20+-30) \\
& =385.7+600 \cos (20 t-10) \mathrm{W}
\end{aligned}
$$

Example 2
A current $\mathbf{I}=10 \angle 30^{\circ}$ flows through an impedance $\mathbf{Z}=20 \angle-22^{\circ} \Omega$. Find the average power delivered to the impedance.

$$
\begin{aligned}
P= & \frac{1}{2} V_{m} I_{m} \cos \left(\theta_{r}-\theta_{i}\right) \\
V_{m} ? \quad \mathbb{V} & =\mathbb{I} Z=(10 \angle 30)(20 \angle-22) \\
& =200 \angle(30-22)=200 \angle 8^{\circ} \\
\therefore \quad P= & \frac{1}{2}(200)(10) \cos \left(8^{\circ}-30^{\circ}\right) \\
= & 1000 \cos \left(-22^{\circ}\right) \\
& =927.2 \omega \text { notice this is } \phi \text { angle of } Z!^{\text {n }}+
\end{aligned}
$$

11.2 Maximum Average Power Transfer (1)

(a)

(b)

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{TH}} & =\mathrm{R}_{\mathrm{TH}}+j \mathrm{X}_{\mathrm{TH}} \\
\mathrm{Z}_{\mathrm{L}} & =\mathrm{R}_{\mathrm{L}}+\mathrm{j} X_{\mathrm{L}}
\end{aligned}
$$

The maximum average power can be transferred to the load if

$$
\begin{gathered}
\mathrm{X}_{\mathrm{L}}=-\mathrm{X}_{\mathrm{TH}} \text { and } \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}} \\
\mathrm{P}_{\max }=\frac{\left|\mathrm{V}_{\mathrm{TH}}\right|^{2}}{8 \mathrm{R}_{\mathrm{TH}}}
\end{gathered}
$$

If the load is purely real, then $\mathrm{R}_{\mathrm{L}}=\sqrt{\mathrm{R}_{\mathrm{TH}}^{2}+\mathrm{X}_{\mathrm{TH}}^{2}}=\left|\mathrm{Z}_{\mathrm{TH}}\right|$

Example 3
For the circuit shown below, find the load impedance Z_{L} that absorbs the maximum average power. Calculate that maximum average power.

1) Find $V_{T H}$ - Remove Z_{L}

$$
V_{\text {TH }}=\mathbb{N a b} \text { w/ load removed }
$$

$$
\begin{aligned}
& =\frac{(2 A)(8-j 4)}{(8-4 j)(5+10 j)} \\
& =\frac{160-200 j}{41}=6.247 \angle-51.34
\end{aligned}
$$

current dui ides
2) FIND $Z_{T H}$ - Turn off $2 A$ sue

$$
\begin{aligned}
Z_{T H} & =5 / /(8-4 j+10 j)=\frac{5(8+6 j)}{5+8+6 j} \\
& =\frac{140+30 j}{41}=3.41+.7317 j
\end{aligned}
$$

3) MAX Power:
choose $Z_{L}=R_{T H}-j X_{T H}$

$$
\begin{aligned}
& z_{L}=\frac{3.41-j 0.737}{\left|V_{T l}\right|^{2}}=\frac{(6.247)^{2}}{8(3.41)}=1.43 \omega \\
& P_{\max }
\end{aligned}
$$

11.3 Effective or RMS Value (1)

(b)

The total power dissipated by R is given by:

$$
P=\frac{1}{T} \int_{0}^{T} i^{2} R d t=\frac{R}{T} \int_{0}^{T} i^{2} d t=I_{r m s}^{2} R
$$

Hence, $I_{\text {eff }}$ is equal to: $I_{e f f}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2} d t}=I_{r m s}$

The rms value is a constant itself which depending on the shape of the function $i(t)$.

The effective value of a periodic current is the dc current that delivers the same average power to a resistor as the periodic current.

11.3 Effective or RMS Value (2)

(a)

(b)

The rms value of a sinusoid $i(t)=I_{m} \cos (\omega t)$ is given by:

$$
\mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{I}_{\mathrm{m}}}{\sqrt{2}}
$$

The average power can be written in terms of the rms values:

$$
P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)=V_{r m s} I_{r m s} \cos \left(\theta_{v}-\theta_{i}\right)
$$

Note: If you express amplitude of a phasor source(s) in rms, then all the answers as a result of this phasor source(s) must also be in rms value.

Example 4
A sinusoidal voltage having a max amplitude of 625 V is applied to the terminals of a 50Ω resistor. Find a) RMS voltage. b) RMS current. c) Average power
a) $V_{\text {rms }}=\frac{V_{m}}{\sqrt{2}}=\frac{625}{\sqrt{2}}=441.9 \mathrm{~V}$
b) $I_{\text {rms }}=\frac{V_{\text {rms }}}{50 \Omega}=\frac{441.9}{50}=8.839 \mathrm{~A}$
c) $P=V_{\text {rms }} I_{\text {rms }} \cos (\underbrace{\theta_{r}-\theta_{j}}_{0 \text { for resistor only load }})=(441.9)(8.839)=3906 \omega$

Also $P=\frac{V_{\text {rms }}^{2}}{R}=\frac{441.9^{2}}{50}=3906 \omega$

$$
=\operatorname{Irms}_{\text {rms }}^{2}(R)=3906 \omega
$$

a) $\mathrm{Vrms}=441.9 \mathrm{~V}$, b) Irms $=8.839 \mathrm{~A}, \mathrm{c}) \mathrm{P}=3906 \mathrm{~W}$

11.4 Apparent Power and Power Factor (1)

- Apparent Power, S, is the product of the r.m.s. values of voltage and current (independent of their phase)
- It is measured in volt-amperes or VA to distinguish it from the average or real power which is measured in watts.

$$
\begin{aligned}
& \mathrm{P}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)=\mathrm{S} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right) \\
&=V_{\frac{m}{} I m}^{2} \cos \left(\theta_{\mathrm{r}}-\theta_{i}\right) \\
& S=V_{\text {rms }} I_{\text {rms }}
\end{aligned}
$$

$$
=V_{m} I_{m}\left(\frac{1}{2}\right)
$$

- Power factor is the cosine of the phase difference between the voltage and current. It is also the cosine of the angle of the load impedance.

$$
z=\frac{\mathbb{V}}{\text { II }}=\frac{V_{m} \angle \theta_{v}}{I_{m} \angle \theta_{i}}=\frac{V_{m}}{I_{m}} \angle\left(\theta_{v}-\theta_{i}\right)
$$

11.4 Apparent Power and Power Factor (2)

Purely resistive load (R)	$\theta_{\mathrm{v}}-\theta_{\mathrm{i}}=0, \quad \mathrm{Pf}=1$	$\mathrm{P} / \mathrm{S}=1$, all power are consumed
Purely reactive load $(\mathrm{L}$ or C$)$	$\theta_{\mathrm{v}}-\theta_{\mathrm{i}}= \pm 90^{\circ}$, $\mathrm{pf}=0$	$\mathrm{P}=0$, no real power consumption
Resistive and reactive load $(\mathrm{R}$ and $\mathrm{L} / \mathrm{C})$	$\theta_{\mathrm{v}}-\theta_{\mathrm{i}}>0$ $\theta_{\mathrm{v}}-\theta_{\mathrm{i}}<0$	\bullet Lagging - inductive load \bullet

Example 5 Obtain the power factor and the apparent power of a load whose impedance is $Z=60+j 40$ when the applied voltage is $160 \cos \left(377 t+10^{\circ}\right)$

$$
z=60+j 40=72.11 \angle 33.69^{\circ}
$$

$\tau_{\text {power factor angle }}$

$$
\begin{aligned}
& \text { Power factor }=\cos (33.69)=0.8321 \text { lagging } \\
& \text { II }=\frac{V}{z}=\frac{160 \angle 10^{\circ}}{22.11<33.69}=2.21 \angle-23.690 \\
& S=\frac{V_{m} I_{m}}{2}=\frac{(160)(2.21)}{2}=176.8 \mathrm{VA} \text { Appacer} \\
& \begin{aligned}
\text { Power }
\end{aligned} \\
& \begin{aligned}
P=S \cos \left(\theta_{V}-\theta_{i}\right)=S \cos (10--23.69)=176.8 \cos \left(33.69^{\circ}\right) \\
=1471 w \text { Avg Purr }
\end{aligned}
\end{aligned}
$$

11.5 Complex Power (1)

Complex power \mathbf{S} is the product of the voltage and the complex conjugate of the current:

$$
\begin{aligned}
& s=\frac{1}{2}\left(V_{m} \angle \theta_{v}\right)\left(I_{m} \angle \theta_{i}\right)^{(1)} V_{m} I_{m} L\left(\theta_{v+}-\theta_{i}\right) \\
& 11.5 \text { Complex Power (2) }
\end{aligned}
$$

$$
\mathrm{S}=\frac{1}{2} \mathrm{~V} \mathrm{I}^{*}=\mathrm{V}_{\mathrm{mss}} \mathrm{I}_{\mathrm{ms}} \angle \theta_{\mathrm{v}}-\theta_{\mathrm{i}}
$$

$$
\Rightarrow \boldsymbol{S}=\mathrm{V}_{\mathrm{rmS}} \underbrace{\mathrm{I}_{\mathrm{ms}} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)}_{\boldsymbol{S}=\mathbf{P}}+\mathrm{j}+\underbrace{\mathrm{V}_{\mathrm{ms}} \mathrm{I}_{\mathrm{ms}} \sin \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right.}_{\mathbf{j}})
$$

P : is the average power in watts delivered to a load and it is the only useful power.
Q : is the reactive power exchange between the source and the reactive part of the load. It is measured in VAR.

- $\mathrm{Q}=0$ for resistive loads (unity pf).
- Q < 0 for capacitive loads (leading pf).
- $\mathrm{Q}>0$ for inductive loads (lagging pf).

11.5 Complex Power (3)

$$
\Rightarrow S=\underbrace{\mathrm{V}_{\mathrm{ms}} \mathrm{I}_{\mathrm{rms}} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)}_{\mathbf{S}=\mathbf{P}}+\underbrace{\mathrm{V}}_{\mathbf{j}} \underbrace{\mathrm{I}_{\mathrm{mms}} \sin \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right.}_{\mathbf{r m s}})
$$

Apparent Power, $\mathrm{S}=|\mathbf{S}|=$ Vrms*Irms $=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$ Real (average) power, $\mathrm{P}=\operatorname{Re}(\mathbf{S})=\mathrm{S} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)$ Reactive Power, $\mathrm{Q}=\operatorname{Im}(\mathbf{S})=\mathrm{S} \sin \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)$
Power factor, $\quad \mathrm{pf}=\mathrm{P} / \mathrm{S}=\cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)$

11.5 Complex Power (4)

$$
\Rightarrow \mathbf{S}=\underbrace{\mathrm{V}_{\mathrm{ms}} \mathrm{I}_{\mathrm{ms}} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)}_{\mathbf{S}=\mathbf{P}}+\underbrace{\mathrm{j}}_{\mathbf{j}} \underbrace{\mathrm{V}_{\mathrm{mms}} \mathrm{I}_{\mathrm{mm}} \sin \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)}_{\mathbf{Q m s}}
$$

Power Triangle Impedance Triangle

Power Factor

11.5 Power Triangle

Power Triangle
Impedance Triangle

Example 6. Find the average power, the reactive power and the complex power delivered by the voltage if $\mathrm{v}=6 \cos (1000 \mathrm{t}) \mathrm{V}$

$$
\begin{aligned}
& \omega=1000 \\
& z_{c}=-j /\left(1000 \cdot 33 \times 10^{-6}\right)=-j 3030 \\
& z_{L}=j \omega L=1000 j \\
& Z_{T}=1.5 k+(-j 3.03) /(1 j) \\
& =1.5+(1.493 j)=1.5+1.493 j \\
& z_{T}=2.11<44.8 \\
& V=6 \angle 0, \mathbb{I}=\frac{V}{Z}=\frac{G L 0}{2.11 \angle 44.8}=2.844 \angle \theta 44.8 \\
& S=\frac{\mathbb{V} \cdot \mathbb{I}^{*}}{2}=(6 \angle 0)(2.844 \angle+44.8)=6.05+6.01 j \\
& \therefore P=6.05 \mathrm{~W}, Q=+6.01 \mathrm{VAR}
\end{aligned}
$$

$$
\mathrm{P}=6.04 \mathrm{~mW}, \mathrm{Q}=6.01 \mathrm{mVAR}, \mathrm{~S}=(6.04+\mathrm{j} 6.01) \mathrm{mVolt}-\mathrm{Amp}
$$

Draw the power triangle for example 6. What is power factor? Power factor angle?

Power Fact Angle

$$
Q=6.01 \text { Pone fuck }=.7095
$$

$$
P=6,05
$$

11.6 Conservation of AC Power (1)

The complex real, and reactive powers of the sources equal the respective sums of the complex, real, and reactive powers of the individual loads.

(a)

(b)

For parallel connection:

$$
\overline{\mathrm{S}}=\frac{1}{2} \overline{\mathrm{~V}} \overline{\mathrm{I}^{*}}=\frac{1}{2} \overline{\mathrm{~V}}\left(\overline{\mathrm{I}_{1}^{*}}+\overline{\mathrm{I}_{2}^{*}}\right)=\frac{1}{2} \overline{\mathrm{~V}} \overline{\mathrm{I}_{1}^{*}}+\frac{1}{2} \overline{\mathrm{~V}} \overline{\mathrm{I}_{2}^{*}}=\overline{\mathrm{S}_{1}}+\overline{\mathrm{S}_{2}}
$$

The same results can be obtained for a series connection. 23

11.7 Power Factor Correction (1)

Power factor correction is the process of increasing the power factor without altering the voltage or current to the original load.

11.7 Power Factor Correction (2)

Example 7. When connected to a $120-\mathrm{V}$ (rms), $60-\mathrm{Hz}$ line, a load absorbs 4 kW at a lagging power factor of 0.8 . Find the value of capacitance necessary to raise the power factor to 0.95

$$
\theta_{1}=36.87
$$

$$
\begin{aligned}
& p f=0.8 \rightarrow p f_{a}=\cos ^{-1}(0.8)=36.87^{\circ} \\
& p f=\frac{p}{s} \\
& |s|=\frac{p}{p^{f}} \\
& \therefore S=\frac{P}{.8}=\frac{4 k W}{.8} \\
& =5 \mathrm{kw} \\
& Q_{1}=5 \sin \left(36.87^{\circ}\right)=5 \sin 36.87=3 \\
& C=\frac{\overbrace{P\left(\tan \theta_{1}-\tan \theta_{2}\right)}^{\omega V_{\text {rus }}^{2}}}{}=\frac{4000(.75-.3286)}{377(120)^{2}} \\
& =\underline{\underline{310,5 \mu \mathrm{~F}}}
\end{aligned}
$$

Example 8. Find the value of a parallel capacitance needed to correct a load of 140 kVAR at 0.85 lagging pf to unity pf. Assume the load is supplied by a $110 \mathrm{Vrms}, 60 \mathrm{~Hz}$ line.

(4)
(1)

$$
\begin{aligned}
p f=.85 \rightarrow p f a & =\cos ^{-1}(.85) \\
p f a & =31.79^{6}
\end{aligned}
$$

(2) $S \sin (31.79)=140 \mathrm{kVAR}$

$$
\begin{aligned}
S= & \left(\frac{140}{\sin 31.79}\right) \mathrm{kVA} \\
& =265.75 \mathrm{kVA} \\
(3)= & S \cos (31.79)=265.75 \cos (31.79) \\
= & 225.9 \mathrm{k} \mathrm{\omega}=225900 \mathrm{\omega}
\end{aligned}
$$

$$
C=\frac{225900(.6198-0)}{(327)\left(120^{2}\right)}=30.7 \mathrm{mF}=
$$

11.8 Power Measurement (1)

The wattmeter is the instrument for measuring the average power.

The basic structure

Equivalent Circuit with load

If $v(t)=V_{m} \cos \left(\omega t+\theta_{v}\right)$ and $i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right)$

$$
\mathbf{P}=\left|\mathbf{V}_{\mathrm{rms}}\right|\left|\mathrm{I}_{\mathrm{ms}}\right| \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)
$$

Optional Support Material

Maximum Average Power Transfer

> Finding the maximum average power which can be transferred from a linear circuit to a Load connected.

a) Circuit with a load

\mathbf{Z}_{L}
b) Thevenin Equivalent circuit

- Represent the circuit to the left of the load by its Thevenin equiv.
- Load Z_{L} represents any element that is absorbing the power generated by the circuit.
- Find the load Z_{L} that will absorb the Maximum Average Power from the circuit to which it is connected.

Maximum Average Power Transfer Condition

- Write the expression for average power associated with $Z_{L}: P\left(Z_{L}\right)$.

$$
\begin{array}{cc}
Z_{T h}=R_{T h}+j X_{T h} & Z_{L}=R_{L}+j X_{L} \\
I=\frac{V_{T h}}{Z_{T h}+Z_{L}}=\frac{V_{T h}}{\left(R_{T h}+j X_{T h}\right)+\left(R_{L}+j X_{L}\right)} & P=\frac{1}{2}|I|^{2} R_{L}=\frac{\left|V_{T h}\right|^{2} R_{L} / 2}{\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}}
\end{array}
$$

Ajust R_{L} and X_{L} to get maximum P

$$
\begin{aligned}
& \frac{\partial P}{\partial X_{L}}=\frac{\left|V_{T h}\right|^{2} R_{L}\left(X_{T h}+X_{L}\right)}{\left[\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}\right]^{2}} \\
& \frac{\partial P}{\partial R_{L}}=\frac{\left|V_{T h}\right|^{2}\left[\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}-2 R_{L}\left(R_{T h}+R_{L}\right)\right]}{2\left[\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}\right]^{2}} \\
& \frac{\partial P}{\partial X_{L}}=0 \Rightarrow X_{L}=-X_{T h} \frac{\partial P}{\partial R_{L}}=0 \Rightarrow R_{L}=\sqrt{R_{T h}^{2}+\left(X_{T h}+X_{L}\right)^{2}}=R_{T h}
\end{aligned}
$$

$$
Z_{L}=R_{L}+j X_{L}=R_{T h}-j X_{T h}=Z_{T h}^{*}
$$

Maximum Average Power Transfer Condition

- Therefore: $Z_{L}=R_{T h}-X_{T h}=Z_{T h}$ will generate the maximum power
transfer.
- Maximum power $P_{\max } \quad P_{\max }=\frac{I_{L}^{2} R_{L}}{2}=\frac{\left|V_{T h}\right|^{2}}{8 R_{T h}}$
$>$ For Maximum average power transfer to a load impedance Z_{L} we must choose Z_{L} as the complex conjugate of the Thevenin impedance Z_{Th}.

$$
\begin{gathered}
Z_{L}=R_{L}+j X_{L}=R_{T h}-j X_{T h}=Z_{T h}^{*} \\
P_{\max }=\frac{\left|V_{T h}\right|^{2}}{8 R_{T h}}
\end{gathered}
$$

Maximum Average Power Transfer

$>$ Practice Problem 11.5: Calculate the load impedance for maximum power transfer and the maximum average power.

P.P.11.5 We first obtain the Thevenin equivalent circuit across $\mathbf{Z}_{\mathrm{L}} . \mathbf{Z}_{\mathrm{Th}}$ is obtained from the circuit in Fig. (a).

(a)

$$
\mathbf{Z}_{\mathrm{Th}}=5 \|(8-\mathrm{j} 4+\mathrm{j} 10)=\frac{(5)(8+\mathrm{j} 6)}{13+\mathrm{j} 6}=3.415+\mathrm{j} 0.7317
$$

Handouts

Example 1

Calculate the instantaneous power and average power absorbed by a passive linear network if:

$$
\begin{aligned}
& v(t)=80 \cos \left(10 t+20^{\circ}\right) \\
& i(t)=15 \sin \left(10 t+60^{\circ}\right)
\end{aligned}
$$

Example 2

A current $\mathbf{I}=10 \angle 30^{\circ}$ flows through an impedance $\mathbf{Z}=20 \angle-22^{\circ} \Omega$. Find the average power delivered to the impedance.

11.2 Maximum Average Power Transfer

Example 3 For the circuit shown below, find the load impedance Z_{L} that absorbs the maximum average power. Calculate that maximum average power.

Example 4

A sinusoidal voltage having a max amplitude of 625 V is applied to the terminals of a 50Ω resistor. Find a) RMS voltage. b) RMS current. c) Average power
a) $\mathrm{Vrms}=441.9 \mathrm{~V}, \mathrm{~b}) \mathrm{Irms}=8.839 \mathrm{~A}, \mathrm{c}) \mathrm{P}=3906 \mathrm{~W}$

Example 5 Obtain the power factor and the

 apparent power of a load whose impedance is $Z=$ $60+\mathrm{j} 40$ when the applied voltage is $160 \cos \left(377 t+10^{\circ}\right)$Example 6. Find the average power, the reactive power and the complex power delivered by the voltage if $v=6 \cos (1000 t) \mathrm{V}$

Draw the power triangle for example 6. What is power factor? Power factor angle?

Example 7. When connected to a $120-\mathrm{V}$ (rms), $60-\mathrm{Hz}$ line, a load absorbs 4 kW at a lagging power factor of 0.8 . Find the value of capacitance necessary to raise the power factor to 0.95

$$
\mathrm{C}=310.5 \mathrm{uF}
$$

Example 8. Find the value of a parallel capacitance needed to correct a load of 140 kVAR at 0.85 lagging pf to unity pf. Assume the load is supplied by a 110 Vrms, 60 Hz line.

