Lecture 10 Chapter 9 Sinusoids and Phasors

Sinusoids and Phasors

Day 1
9.1 Motivation
9.2 Sinusoids, Complex Numbers

Day 2
9.3 Phasors
9.4 Phasor relationships for circuit elements

Day 3
9.5 Impedance and admittance
9.6 Kirchhoff's laws in the frequency domain
9.7 Impedance combinations

9.1 Motivation (1)

How to determine $v(t)$ and $i(t)$?

How can we apply what we have learned before to determine $i(t)$ and $v(t)$?

Sinusoidal Signals

- Broad Applications
- Fourier Series: Fundamental basis for more complicated signals
- Filters: pass or reject sinewaves of certain frequency
- Signal processing: how to extract desired information from mix of signal plus noise
- Radio, Radar, Lasers, TV, Microwave, Cell phones, AC Generators, Piston engines:
- All express waveforms based on sinewaves
- Often complex numbers used to represent/analyze

9.2 Sinusoids (1)

- A sinusoid is a signal that has the form of the sine or cosine function.
- A general expression for the sinusoid,

where
$\mathrm{Vm}=$ the amplitude of the sinusoid
$\omega=$ the angular frequency in radians/s
$\Phi=$ the phase

9.2 Sinusoids (2)

A periodic function is one that satisfies $v(t)=v(t+n T)$, for all t and for all integers n.

- Only two sinusoidal values with the same frequency can be compared by their amplitude and phase difference.
- If phase difference is zero, they are in phase; if phase difference is not zero, they are out of phase.

Example 1
Given a sinusoid, $5 \sin \left(4 \pi t-60^{\circ}\right)$, calculate its amplitude, phase, angular frequency (ω, rad/s), period, and cyclical frequency (f, Hz).

$$
\begin{aligned}
& A \sin (\omega t+\phi)=5 \sin \left(4 \pi t-60^{\circ}\right) \\
& A=5 \\
& \omega=4 \pi \mathrm{rad} / \mathrm{s} \\
& \phi=-60^{\circ} \\
& T=\frac{2 \pi}{\omega}=\frac{2 \pi}{4 \pi}=\frac{1}{2} \mathrm{~s} \\
& F=\frac{1}{T}=2 \mathrm{~Hz} \\
& \text { Amplitude }=5, \text { phase }=-60^{\circ}, \text { angular frequency }=4 \pi \mathrm{rad} / \mathrm{s}, \quad 7 \\
& \text { Period }=0.5 \mathrm{~s}, \text { frequency }=2 \mathrm{~Hz} .
\end{aligned}
$$

Example 2
Find the phase angle between $i_{1}=-4 \sin \left(377 t+25^{\circ}\right)$ and $i_{2}=5 \cos \left(377 t-40^{\circ}\right)$, does i_{1} lead or $\operatorname{lag} \mathrm{i}_{2}$?

1) Convent i, to cosine

$$
\begin{aligned}
i_{1}= & -4 \sin \left(377 t+25^{\circ}\right) \\
= & -4 \cos (377 t+25-90) \\
& =4 \cos (377 t+25+90)=4 \cos (377 t+115)
\end{aligned}
$$

2) Subtract $\phi_{1}-\phi_{2}=115-(-40)=155^{\circ}$
 ϕ_{1} has langer $\phi_{\text {angle }}$ $\therefore \quad \phi_{1}$ leads ϕ_{2} i_{1} leads i_{2} by 155°. 8

Complex Numbers

- What if we want to add two sinusoids?
$-\mathrm{V}(\mathrm{t})=5 \cos (377 \mathrm{t}+45)+7 \sin (377 \mathrm{t}-60)$
- Trig Identity:

$$
\sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)
$$

- Not very pleasant!
- To deal more effectively with sinusoidal signals we will learn a new tool:
- Complex Numbers

Complex Numbers,Intro (video)
Origin: roots of polynomials

$$
\begin{aligned}
& x^{2}+9=0 \\
& x^{2}=-9 \\
& x= \pm \sqrt{-9} \\
& x= \pm \sqrt{-1} \sqrt{9} \\
& x= \pm j 3
\end{aligned}
$$

1 mag inary Unit

$$
\begin{aligned}
j & =\sqrt{-1} \quad \text { (for Elect Engrs) } \\
j^{2} & =-1 \\
> & \Rightarrow-1 \\
& =\text { Current for Elect Engrs }
\end{aligned}
$$

Complex Nums - Rectangular

Rectangular Form

Some Examples

$$
3+2 j
$$

$$
3+0 j=3
$$

$2 j$

The Complex Plane

Rectangular Coordinates

$$
(x, y)=\left(R_{e}(n), \ln (n)\right)
$$

like a 2D vector

Complex Sums - Rectangular adding and subtracting (video)
Adding a Sub btractim

$$
\begin{aligned}
& (a+j b)+(c+j d)=(a+c)+j(b+d) \\
& (3-2 j)-(4+8 j)=-1-10 j \\
& 3+(3+8 j)=(3+0 j)+(3+8 j)=6+8 j
\end{aligned}
$$

Complex Nums - Rectangular Multiplying (video)
$\frac{\text { Multiplying }}{\text { use binomial "FOIL" method }}$

$$
\begin{aligned}
(3+2 j)(1-3 j) & =3-9 j+2 j-6 j^{2} \\
& =3-7 j+6 \\
& =9-7 j
\end{aligned}
$$

Complex Conjugate

$$
n=2+3 j, \quad n^{*}=2-3 j
$$

product of n and n^{*} :
always cancels

$$
\begin{aligned}
& \text { of } n \text { and } n^{T}: \\
&(2+3 j)(2-3 j)=4+\widetilde{6 j-6 j}-9 j^{2} \\
&=4+0 j+9 \\
&=13 \text { (always Real) } \\
&=a^{2}+b^{2}
\end{aligned}
$$

Complex Sums - Rectangular Dividing (video)
Dividing - multiply nun + den by complex conj of den

$$
\begin{aligned}
\frac{(1+2 j)}{(3-j)} & =\frac{(1+2 j)}{(3-j)} \frac{(3+j)}{(3+j)} \\
& =\frac{\left(3+j+6 j+2 j^{2}\right)}{9+3 j-3 j-j^{2}} \\
& =\frac{(3-2)+(1+6) j}{(9+1)+(3-3) j} \\
& =\frac{1+7 j}{10}=\frac{1}{10}+\frac{7}{10} j
\end{aligned}
$$

Complex Arithmetic (Rectangular)
Given:

$$
\begin{aligned}
& a=3+4 j \\
& b=-5+6 j
\end{aligned}
$$

Find

$$
\begin{aligned}
& \mathrm{a}+\mathrm{b}=(3+4 j)+(-5+6 j)=-2+10 j \\
& \mathrm{a}-\mathrm{b}=(3+4 j)-(-5+6 j)=8-2 j \\
& \mathrm{a} * \mathrm{~b}=(3+4 j)(-5+6 j)=-15+18 j-20 j+24 j^{2} \\
&=-39-2 j \\
& \mathrm{a} / \mathrm{b}=\frac{(3+4 j)}{(-5+6 j)} \begin{aligned}
(-5-6 j) & =\frac{-15-18 j-20 j-24 j^{2}}{25+30 j-30 j-36 j^{2}}=\frac{9-38 j}{61}
\end{aligned}
\end{aligned}
$$

Complex Numbers - Polar (video)
Complex number $a+j b$ can be represented using

$-3<-45$

$3<135$

Conversion: Rect to Polar (video)
Convent Rect to Polar Form

$$
\begin{aligned}
& a^{2}+b^{2}=r^{2} \\
& r=\sqrt{a^{2}+b^{2}} \\
& \tan \theta=\frac{b}{a} \\
& \theta=\tan ^{-1}\left(\frac{b}{a}\right)
\end{aligned}
$$

Careful!

$$
-\frac{\pi}{2}<\tan ^{-1}\left(\frac{b}{a}\right)<\frac{\pi}{2}
$$

Conversion: Rect to Polar (video)
Example

$$
\begin{array}{rl}
& 3+4 j \\
r= & \sqrt{3^{2}+4^{2}}=5 \\
\theta= & \tan ^{-1}\left(\frac{4}{3}\right)=53.1^{\circ} \\
\therefore 3+4 j & 3
\end{array}
$$

Example

$$
\begin{aligned}
& \frac{-3-4 j}{r=\sqrt{(-3)^{2}+(-4)^{2}}=5} \\
& \theta=\tan ^{-1}\left(\frac{-4}{-3}\right)=51^{6}
\end{aligned}
$$

In General

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{b}{a}\right) \\
& \theta=\tan ^{-1}\left(\frac{b}{a}\right) \pm 180^{\circ}
\end{aligned}
$$

Found wrong θ !

$$
\therefore-3-4 j \longleftrightarrow 5 \angle 233.1^{\circ}
$$

$$
\theta=53.1^{\circ}+180^{\circ}=233.1^{\circ}
$$

Conversion: Polar to Rect (video)
Convert Polar to Rect Form

$$
a+j b
$$

$$
\begin{aligned}
& \sin \theta=\frac{b}{r} \\
& b=r \sin \theta \\
& \cos \theta=\frac{a}{r} \\
& a=r \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
\therefore a+j b & =r \cos \theta+j r \sin \theta \\
& =r(\cos \theta+j \sin \theta)
\end{aligned}
$$

Euler's Formula (video)
Euler's Formula

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

3 ways to express complex number \underline{n}

$$
\begin{aligned}
& n=a+j b=r \cos \theta+j r \sin \theta \\
& =r(\cos \theta+j \sin \theta) \\
& =r e^{j \theta} \\
& =r \angle \theta \\
& \text { (Rectangular) } \left.\begin{array}{c}
\text { former }
\end{array}\right) \\
& \text { (Exponentad } \underset{\text { Four }}{ } \text {) } \\
& \text { (Polar Form) }
\end{aligned}
$$

Polar to Rect (and back)

- Convert $a=2-3 j$ and $b=-4+5 j$

$$
\begin{aligned}
& \text { - to polar form: } \\
& \begin{aligned}
a & =2-3 j \quad r=\sqrt{2^{2}+(-3)^{2}}=\sqrt{13}=3.61, \theta=\tan ^{-1}\left(\frac{-3}{2}\right)=-563 \\
& =3.61<-56.3^{\circ} \\
b & =-4+5 j \quad r=\sqrt{(-4)^{2}+(5)^{2}}=\sqrt{41}=6.40, \theta=\tan ^{-1}\left(\frac{5}{4}\right)=-5.13+180 \\
& =6.40 \mathrm{~L} 129^{\circ}
\end{aligned}=128.6
\end{aligned}
$$

- Convert C $=2<30^{\circ}$ and $d=4<200^{\circ}$
- To rectangular form

$$
\begin{aligned}
& c=2 \angle 30^{\circ}=2 \cos 30+j 2 \sin 30=1.73+j \\
& d=4 \angle 200^{\circ}=4 \cos 200+j 4 \sin 200=-3.75-1.37 j
\end{aligned}
$$

Complex: Add/Multiply in Polar
3 Forms Form (video)

$$
\begin{aligned}
a+j b & =r \angle \theta \\
& =r e^{j \theta}
\end{aligned}
$$

Adding: $r \angle \theta+s \angle \phi=r e^{j \theta}+s e^{j \phi}$
\rightarrow convert to Rectangular
then add
Multiplying : we can use law of exponents: $a^{n} \cdot a^{m}=a^{n+m}$

$$
\begin{aligned}
(r \angle \theta)(s \angle \phi) & =r e^{j \theta} s e^{j \phi}=r \cdot s e^{j \overline{(\theta+\phi)}} \\
& =r s \angle(\theta+\phi)
\end{aligned}
$$

$$
(3<45)(-2 \angle 15)=-6 \angle 60=6 \angle 240
$$

Complex: Divide in Polar (video)
Dividing use law of exponents again: $\frac{a^{n}}{a^{m}}=a^{n-m}$

$$
\begin{aligned}
& \frac{r \angle \theta}{s \angle \phi}=\frac{r e^{j \theta}}{s e^{j \phi}}=\frac{r}{s} e^{j(\theta-\phi)}=\frac{r}{s} \angle(\theta-\phi) \\
& \frac{3 \angle 45}{2 \angle 15}=\frac{3}{2} \angle(45-15)=1.5 \angle 30^{\circ} \\
& \frac{1}{3 \angle 10^{\circ}}=\frac{1 \angle 0^{\circ}}{3 \angle 10^{\circ}}=\frac{1}{3} \angle(0-10)=\frac{1}{3} \angle-10^{\circ}
\end{aligned}
$$

Summary: Mathematic operation of complex numbers

1. Addition
2. Subtraction
3. Multiplication
4. Division
5. Reciprocal
6. Square root
7. Complex conjugate

$$
z^{*}=x-j y=r \angle-\phi=r e^{-j \phi}
$$

8. Euler's identity
$e^{ \pm j \phi}=\cos \phi \pm j \sin \phi$

Polar Complex Mult/Div
Given:

$$
\begin{aligned}
& c=8<45 \\
& d=12<250
\end{aligned}
$$

Find

$$
\begin{aligned}
& c^{*} d=(8 \angle 45)(12 \angle 250)=96 \angle 295^{\circ} \\
& c / d=\frac{8 \angle 45}{12 \angle 250}=\frac{2}{3} \angle(45-250)=\frac{2}{3} \angle-205=\frac{2}{3} \angle 155 \\
& c^{*}(\text { complex conj of } c)=(8 \angle 45)^{*}=8 \cos 45-j 8 \sin 45 \\
& =8 \cos (-45)+j 8 \sin (-45)=8 \angle-45
\end{aligned}
$$

Example 3 Calculator Demo!

- Evaluate the following complex numbers:
a. $\left[(5+\mathrm{j} 2)(-1+\mathrm{j} 4)-5 \angle 60^{\circ}\right]$
b. $\frac{10+\mathrm{j} 5+3 \angle 40^{\circ}}{-3+\mathrm{j} 4}+10 \angle 30^{\circ}$

Solution: $a .-15.5+j 13.67$ b. $8.293+j 2.2$

9.3 Phasor (1)

- A phasor is a complex number that represents the amplitude and(initial phase (at $t=0$) of a simusoid.
$A \cos (\omega t+\phi) \leftrightarrow A e^{j \phi} \leftrightarrow A \angle \phi$
- It allows us to perform math on sinusoids of the same frequency by using a complex number representation - much easier than trig identities!!

9.3 Phasor (4)

- Transform a sinusoid to and from the time domain to the phasor domain:

$$
v(t)=V_{m} \cos (\omega t+\phi) \longleftrightarrow V=V_{m} \angle \phi
$$

(time domain)
(phasor domain)

- Amplitude and phase difference are two principal concerns in the study of voltage and current sinusoids.
- Phasor will be defined from the cosine function in all our proceeding study. If a voltage or current expression is in the form of a sine, it will be changed to a cosine by subtracting 90 degrees from the phase.
- Note, ϕ is the phase angle of the cosine at $\mathrm{t}=0$

Example 4 9.3 Phasor (5)
Transform the following sinusoids to phasors:

$$
\begin{aligned}
& \mathrm{i}=6 \cos \left(50 \mathrm{t}-40^{\circ}\right) \mathrm{A} \\
& \mathrm{v}=-4 \sin \left(30 \mathrm{t}+50^{\circ}\right) \mathrm{V} \\
& \quad \text { II }=6 \angle-40 \mathrm{~A} \text { (by inspection) }
\end{aligned}
$$

for U, convent to positive cosine:

$$
\begin{aligned}
v & =-4 \sin (30 t+50)=-4 \cos (30 t+50-90) \\
& =4 \cos (30 t+50+90) \\
\therefore \text { VIII } & =4<140 \mathrm{~V}
\end{aligned}
$$

$$
\mathrm{I}=6 \angle-40^{\circ} \mathrm{A}
$$

$$
\mathrm{V}=4 \angle 140^{\circ} \mathrm{V}
$$

Example 5: 9.3 Phasor (6)
Transform to sinusoids the phasors:
a. $\quad \mathbf{V}=-10 \angle 30^{\circ} \mathrm{V}$
b. $\quad \mathbf{I}=\mathrm{j}(5-\mathrm{j} 12) \mathrm{A}$
a)

$$
\begin{aligned}
& v(t)=-10 \cos \left(\omega t+30^{\circ}\right) \\
& v(t)=10 \cos \left(\omega t+210^{\circ}\right)
\end{aligned}
$$

b) $I I=j(5-j \mid 2)=5 j-j^{2} 12=12+5 j$

$$
=13<22.6^{\circ}
$$

$$
\therefore i(t)=13 \cos \left(\omega t+22.6^{\circ}\right) \mathrm{A}
$$

$$
v(t)=10 \cos \left(\omega t+210^{\circ}\right) \mathrm{V}, \quad i(t)=13 \cos \left(\omega t+22.62^{\circ}\right) \mathrm{A}
$$

9.3 Phasor (7)

The differences between $v(t)$ and V :

- $\quad \mathrm{v}(\mathrm{t})$ is instantaneous or time-domain representation V is the frequency or phasor-domain representation.
- $\quad v(t)$ is time dependent, V is not. $v(t)$ is always real with no complex term, V is generally complex.

Note: Phasor analysis applies only when frequency is constant; it is applied to two or more sinusoid signals only if they have the same frequency.

9.3 Phasor (10)

- we can derive the differential equations for the following circuit in order to solve for $v_{o}(t)$ in phase domain V_{0}.

- However, the derivation may sometimes be very tedious.

Is there any quicker and more systematic methods to do it?

$$
\begin{aligned}
& \text { 9.3 Phasor (11) } \\
& \text { The answer is YES! }
\end{aligned}
$$

Instead of first deriving the differential equation and then transforming it into phasor domain to solve for V_{o}, we can transform all the RLC components into the phasor domain first, then apply the KCL laws and other theorems to set up a phasor equation involving V_{o} directly.

But what does an R, L or C look like in the Phasor Domain??

Resistors in the Frequency (Phasor) Domain

- Ohm's Law, Time Domain

$$
\begin{aligned}
& V=i R \\
& \text { Suppose } i(t)=I_{m} \cos (\omega t+\phi) \\
& \text { then } \quad v(t)=R \cdot I_{m} \cos (\omega t+\phi)
\end{aligned}
$$

- Ohm's Law, Frequency Domain

$$
\begin{aligned}
& \boldsymbol{I}=I_{m}<\phi \\
& \nabla=R \mathbb{I}=R I_{m}<\phi \\
& \bar{T} \text { same effect as time domain }
\end{aligned}
$$

Inductors in the Frequency (Phasor) Domain

- Inductor Law, Time Domain

Suppose $j(t)=I_{m} \cos \left(w_{t}+\phi\right)$
$v=L \frac{d i}{d t}$
then

$$
\begin{aligned}
v(t) & =\frac{L d i}{d t}=-\omega L I_{m} \sin (\omega t+\phi) \\
& =-\omega L \operatorname{Im} \cos (\omega t+\phi-90)-\operatorname{add} 180^{\circ} \\
& =\omega L \operatorname{Im} \cos (\omega t+\phi+90)
\end{aligned}
$$

- Inductor Law, Frequency Domain

$$
\begin{aligned}
I & =I_{m}<\phi \\
\nabla & =\omega L I_{m} \angle(\phi+90)=\omega L I_{m} e^{j(\phi+90)} \\
& =\omega L I_{m} e^{j \phi} e^{j 90}=\omega L I_{m} e^{j \phi}(j)=j \omega L I \\
\nabla & =j \omega L I I
\end{aligned}
$$

Capacitors in the Frequency
(Phasor) Domain

- Capacitor Law, Time Domain $\quad j=C \frac{d v}{d t}$

$$
\begin{aligned}
\text { Suppose } v(t) & =V_{m} \cos (\omega t+\phi) \\
\text { then } i(t) & =C \frac{d v}{d t}=-\omega C V_{m} \sin (\omega t+\phi) \\
& =\omega C V_{m} \cos (\omega t+\phi+90)
\end{aligned}
$$

- Capacitor Law, Frequency Domain

$$
\begin{aligned}
& \mathbb{I}=V_{m}<\phi \\
& \mathbb{I}=j \omega<\pi \quad \text { (same denvätion as Inductor) }
\end{aligned}
$$

$$
\text { Therefore } \bar{\nabla}=\frac{\pi}{j w c} \text {, or } \nabla=\frac{-j}{\omega C} I
$$

9.4 Phasor Relationships for Circuit Elements (1)

Capacitor:

(b)

9.4 Phasor Relationships for Circuit Elements (2)

Summary of voltage-current relationship

Element	Time domain	Frequency domain
R	$v=R i$	$V=R I$
L	$v=L \frac{d i}{d t}$	$V=j \omega L I$
C	$i=C \frac{d v}{d t}$	$V=\frac{I}{j \omega C}=\frac{-j}{\omega C}$

Example 7A
If current $i(t)=5 \cos \left(100 t+30^{\circ}\right) m A$ is applied to a 2 mH inductor, calculate the voltage, $v(t)$, across the inductor.

$$
\begin{aligned}
& \mathbb{I}=j \omega L \mathbb{I}=j(100)(.002)(5 \angle 30) \\
&=j(1 \angle 30) \\
&=(1 \angle 90)(1 \angle 30)=1 \angle 120^{\circ} \\
& \therefore \quad U(t)=\cos \left(100 t+120^{\circ}\right) V
\end{aligned}
$$

Example 7B
If voltage $v(t)=6 \cos \left(100 t-30^{\circ}\right) \mathrm{V}$ is applied to a $50 \mu \mathrm{~F}$ capacitor, calculate the current, $i(t)$, through the capacitor.

$$
\begin{aligned}
& \quad \begin{aligned}
\bar{V} & =\frac{I}{j \omega C}, \quad I=j \omega C I \\
\omega=100, C & =50 \times 10^{-6}, \quad \mathbb{I}=6 \angle-30 \\
\mathbb{I} & =j(100)\left(50 \times 10^{-6}\right)(6 \angle-30) \\
& =j(.03 \angle-30) \\
& =(1 \angle 90)(.03 \angle-30)=.03 \angle(-30+90) \\
& =.03<60 \mathrm{~A} \\
\therefore \quad j(t) & =30 \cos \left(100 t+60^{\circ}\right) \mathrm{mA}
\end{aligned}
\end{aligned}
$$

Answer: $i(t)=30 \cos \left(100 t+60^{\circ}\right) \underline{m A}$

9.5 Impedance and Admittance (1)

- The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor current I, measured in ohms Ω.

$$
Z=\frac{V}{I}=R+j X
$$

where $R=\operatorname{Re}, Z$ is the resistance and $X=I m, Z$ is the reactance. Positive X is for L and negative X is for C.

- The admittance Y is the reciprocal of impedance, measured in siemens (S).

$$
Y=\frac{1}{Z}=\frac{I}{V}
$$

9.5 Impedance and Admittance (2)

Impedances and admittances of passive elements

Element	Impedance	Admittance
\mathbf{R}	$Z=R$	$Y=\frac{1}{R}$
\mathbf{L}	$Z=j \omega L$	$Y=\frac{1}{j \omega L}$
\mathbf{C}	$Z=\frac{1}{j \omega C}=\frac{-j}{\omega C}$	$Y=j \omega C$

9.5 Impedance and Admittance (3)

Short circuit at dc

$\omega \rightarrow \infty ; Z \rightarrow \infty$
(a)

$$
\omega=0 ; Z \rightarrow \infty
$$

$$
\omega \rightarrow \infty ; Z=0
$$

(b)

9.5 Impedance and Admittance (4)

After we know how to convert RLC components from time to phasor domain, we can transform a time domain circuit into a phasor/frequency domain circuit.

Hence, we can apply the KCL laws and other theorems to directly set up phasor equations involving our target variable(s) for solving.

Example 8 determine $v(t)$ and $i(t)$.

1) Find Z_{L}

$$
\begin{aligned}
z_{L} & =j \omega L \\
& =j(10)(12)=j 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { nd } i(t) . \\
& v_{s}=5 \cos (10 t)
\end{aligned}
$$

2) Find Z_{T}

$$
z_{T}=4+z_{L}=4+j 2
$$

3) Find phasor $\underline{V I I}_{S}=5 \angle 0^{\circ}$
4) Use Ohm's Law to find $\mathbb{I}_{S}=\frac{\mathbb{Z}_{S}}{Z_{T}}=\frac{5 \angle 0^{\circ}}{\left(4+j^{2}\right)}$

$$
\begin{aligned}
& \mathbb{I}_{S}=\frac{5 \angle 0^{\circ}}{\sqrt{4^{2}+2^{2}} \angle \tan ^{-1}\left(\frac{2}{4}\right)}=\frac{5 \angle 0^{\circ}}{4.47 \angle 26.57^{\circ}}=1.118 \angle-26.56^{\circ} \\
& j_{s}(t)=1.118 \cos \left(10 t-26.56^{\circ}\right)
\end{aligned}
$$

5) Use Ohm's Law to find $I=I_{s} Z_{L}=(1.118 L-26.56)(j 2)$

$$
=2.24<(-26.56+90)=2.24<63.43^{\circ}
$$

Answers: $i(t)=1.118 \cos \left(10 t-26.56^{\circ}\right) A ; v(t)=2.236 \cos \left(10 t+63.43^{\circ}\right) V \phi$

9.6 Kirchhoff's Laws in the Frequency Domain (1)

- Both KVL and KCL hold in the phasor domain or more commonly called frequency domain.
- Moreover, the variables to be handled are phasors, which are complex numbers.
- All the mathematical operations involved are now in complex domain.

9.7 Impedance Combinations (1)

- The following principles used for DC circuit analysis all apply to AC circuit.
- For example:
a. voltage division
b. current division
c. circuit reduction
d. impedance equivalence
e. Y- Δ transformation
9.7 Impedance Combinations (2)

Example 9 Determine the input impedance of the circuit in figure below at $\omega=10 \mathrm{rad} / \mathrm{s}$.

$$
\begin{aligned}
z_{C_{1}} & =\frac{-j}{\omega C_{1}}=\frac{-j}{10(.002)}=-50 j \\
z_{C_{2}} & =\frac{-j}{\omega C_{2}}=\frac{-j}{10(1004)}=-25 j \\
z_{L} & =j \omega L=j(10)(2)=20 j \\
z_{\|} & =z_{C_{2}}\left\|\left(z_{2}+50\right)=-25 j\right\|(50+20 j)=\frac{(-25 j)(50+20 j)}{-25 j+50+20 j} \\
& =\frac{500-1250 j}{50-5 j} \frac{(50+5 j)}{(50+5 j)}=\frac{31250-60,000 j}{2525}=12.37-23.76 j
\end{aligned}
$$

Answer: $Z_{\text {in }}=32.38-j 73.76$

Ex 10
The circuit is operating in the sinusoidal steady state. Find the steady-state expression for $v_{o}(t)$ if $v_{g}=64 \cos 8000 t \mathrm{~V}$.

1) Find $Z_{c}=\frac{-j}{8000\left(31.25 \times 10^{-9}\right)}$

$$
z_{c}=-4000 j
$$

2) Find $z_{L}=j(8000)(.5)$

$$
z_{L}=+4000 j
$$

3) III $_{g}=64 \angle 0$
4) Voltage Divide $\mathbb{I}_{0}=\left(\frac{z_{11}}{z_{11}+z_{c}}\right) \mathbb{I}_{g}$

$$
\begin{gathered}
\left.Z \|=\frac{(2000)(4000 j)}{(2000+4000 j)}=1600+800 j\right) \\
I_{0}=\frac{(1600+800 j)}{(1600+800 j-4000 j)} I_{g}=\left(\frac{1}{2} j\right)(64 \angle 0)=32 \angle 90 \\
\therefore v 0(t)=32 \cos (8000 t+90) \\
v 0(t)=-32 \sin (8000 t)(\text { or } 32 \cos (8000 t+90))
\end{gathered}
$$

Handouts

Example 1

Given a sinusoid, $5 \sin \left(4 \pi t-60^{\circ}\right)$, calculate its amplitude, phase, angular frequency (ω, rad/s), period, and cyclical frequency (f, Hz).

Amplitude $=5$, phase $=-60^{\circ}$, angular frequency $=4 \pi \mathrm{rad} / \mathrm{s}$,
Period $=0.5 \mathrm{~s}$, frequency $=2 \mathrm{~Hz}$.

Example 2

Find the phase angle between $i_{1}=-4 \sin \left(377 t+25^{\circ}\right)$ and $i_{2}=5 \cos \left(377 t-40^{\circ}\right)$, does i_{1} lead or lag i_{2} ?

Complex Arithmetic (Rectangular)

Given:

$$
\begin{aligned}
& a=3+4 j \\
& b=-5+6 j
\end{aligned}
$$

Find

$$
a+b
$$

$$
a-b
$$

$a * b$
a / b

Polar to Rect (and back)

- Convert $\mathrm{a}=2-3 \mathrm{j}$ and $\mathrm{b}=-4+5 j$
- to polar form:
- Convert $c=2<30^{\circ}$ and $d=4<200^{\circ}$
- To rectangular form

Polar Complex Mult/Div

Given:
$c=8<45$
$d=12<250$
Find
c * d
c / d
c* (complex conj of c)

Example 4
 9.3 Phasor (5)

Transform the following sinusoids to phasors:

$$
\begin{aligned}
& i=6 \cos \left(50 t-40^{\circ}\right) A \\
& v=-4 \sin \left(30 t+50^{\circ}\right) V
\end{aligned}
$$

Example 5:

9.3 Phasor (6) Transform to sinusoids the phasors:

$$
\begin{array}{ll}
\text { a. } & \mathbf{V}=-10 \angle 30^{\circ} V \\
\text { b. } & \mathbf{I}=j(5-j 12) \mathrm{A}
\end{array}
$$

Example 7A

If current $i(t)=5 \cos \left(100 t+30^{\circ}\right) m A$ is applied to a 2 mH inductor, calculate the voltage, $v(t)$, across the inductor.

Example 7B

If voltage $v(t)=6 \cos \left(100 t-30^{\circ}\right) \mathrm{V}$ is applied to a $50 \mu \mathrm{~F}$ capacitor, calculate the current, $i(t)$, through the capacitor.

Example 8 determine $v(t)$ and $i(t)$.

Answers: $i(t)=1.118 \cos \left(10 t-26.56^{\circ}\right) A ; v(t)=2.236 \cos \left(10 t+63.43^{\circ}\right) V$

9.7 Impedance Combinations (2)

Example 9 Determine the input impedance of the circuit in figure below at $\omega=10 \mathrm{rad} / \mathrm{s}$.

The circuit is operating in the sinusoidal steady state. Find the steady-state expression for $v_{o}(t)$ if $v_{g}=64 \cos 8000 t \mathrm{~V}$.

