Lecture 10 Chapter 9 Sinusoids and Phasors

Sinusoids and Phasors

<u>Day 1</u>

9.1 Motivation

- 9.2 Sinusoids, Complex Numbers
- <u>Day 2</u>

9.3 Phasors

9.4 Phasor relationships for circuit elements

<u>Day 3</u>

- 9.5 Impedance and admittance
- 9.6 Kirchhoff's laws in the frequency domain
- 9.7 Impedance combinations

9.1 Motivation (1)

How to determine v(t) and i(t)?

How can we apply what we have learned before to determine *i*(*t*) and *v*(*t*)?

Sinusoidal Signals

- Broad Applications
 - Fourier Series: Fundamental basis for more complicated signals
 - Filters: pass or reject sinewaves of certain frequency
 - Signal processing: how to extract desired information from mix of signal plus noise
 - Radio, Radar, Lasers, TV, Microwave, Cell phones, AC Generators, Piston engines:
 - All express waveforms based on sinewaves
 - Often complex numbers used to represent/analyze

9.2 Sinusoids (1)

- A sinusoid is a signal that has the form of the sine or cosine function.
- A general expression for the sinusoid,

where

Vm = the **amplitude** of the sinusoid ω = the angular frequency in radians/s Φ = the phase

(a)

9.2 Sinusoids (2)

A <u>periodic function</u> is one that satisfies v(t) = v(t + nT), for all t and for all integers n.

- Only two sinusoidal values with the <u>same frequency</u> can be compared by their amplitude and phase difference.
- If phase difference is zero, they are in phase; if phase difference is not zero, they are out of phase.

Example 1

Given a sinusoid, $5\sin(4\pi - 60^{\circ})$, calculate its amplitude, phase, angular frequency (ω , rad/s), period, and cyclical frequency (f, Hz).

$$A \sin(\omega t + \phi) = 5 \sin(4\pi t - 60^{\circ})$$

$$A = 5$$

$$\omega = 4\pi \text{ rad/s}$$

$$\phi = -60^{\circ}$$

$$- = \frac{2\pi}{\omega} = \frac{2\pi}{4\pi} = \frac{1}{2} 5$$

$$C = \frac{1}{4\pi} = 2 H z$$

Amplitude = 5, phase = -60° , angular frequency = 4π rad/s, Period = 0.5 s, frequency = 2 Hz.

Example 2

Find the phase angle between $i_1 = -4\sin(377t + 25^\circ)$ and $i_2 = 5\cos(377t - 40^\circ)$, does i_1 lead or lag i_2 ?

i) convert
$$j_{1}$$
 to cosine
 $j_{1} = -4 \sin (377 \pm +25^{\circ})$
 $= -4 \cos (377 \pm +25^{\circ})$
 $L(180 \text{ deg phase shift inverts } - sign)$
 $= 4 \cos (377 \pm +25 + 90) = 4\cos(3778 \pm 115)$
2) Subtret $\phi_{1} - \phi_{2} = 115 - (-40) = 155^{\circ}$
 ϕ_{1} has largen ϕ_{augle}
 $\vdots \phi_{1}$ leads ϕ_{2}

 i_1 leads i_2 by 155°. ⁸

Complex Numbers

- What if we want to <u>add</u> two sinusoids?
 - $-V(t) = 5\cos(377t + 45) + 7\sin(377t 60)$
 - -Trig Identity:

$$\sin u + \sin v = 2\sin\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$

– Not very pleasant!

- To deal more effectively with sinusoidal signals we will learn a new tool:
 - Complex Numbers

Complex Numbers, Intro (video)

$$\begin{array}{l} \underline{Origin: roots of polynomials} \\ x^{2} \pm 9 = 0 \\ x^{2} = -9 \\ x = \pm \sqrt{-9} \\ x = \pm \sqrt{-1} \sqrt{9} \\ x = \pm j 3 \end{array} \qquad \begin{array}{lmag in any Ouit \\ j = \sqrt{-1} & (for \ Elect \ Engus) \\ j^{2} = -1 \\ j = -1 \\ \hline for \ Math / Physics \\ \end{array} \\ = Current \ for \ Elect \ Engus \end{array}$$

Complex Nums – Rectangular

Rectangular Form

$$a + jb = n$$

 $J J J$
 $Re(n) Im(n)$
Some Examples
 $3+2j$
 $3+0j = 3$
 $2j$

Complex Nums – Rectangular adding and subtracting (video)

$$\frac{Adding \, \epsilon \, s_{1} \, s_{2} \, \epsilon_{3}}{(a + jb) + (c + jd)} = (a + c) + j(b + d)$$

$$(3 - 2j) - (4 + 8j) = -1 - 10j$$

$$3 + (3 + 8j) = (3 + 0j) + (3 + 8j) = -6 + 8j$$

Complex Nums – Rectangular Multiplying (<u>video</u>)

$$(3+2j)(1-3j) = 3 - 9j + 2j - 6j^{c}$$

= 3 - 7j + 6
= [9-7j]

Complex Conjugate

$$n = 2 \pm 3j$$
, $n^* = 2 - 3j$
product of n and n^{\ddagger} :
 $(2 \pm 3j)(2 - 3j) = 4 \pm 6j - 6j - 9j^2$
 $= 4 \pm 0j \pm 9$
 $= 13$ (always Real)
 $= a_{\pm}^2 \pm b_{\pm}^2$ 13

Complex Nums - Rectangular
Dividing (video)
Dividing - multiply num + den by complex conj of den

$$\frac{(1+2j)}{(3-j)} = \frac{(1+2j)}{(3-j)} \frac{(3+j)}{(3+j)}$$

$$= \frac{(3+j+6j+2j^2)}{9+3j-3j-j^2}$$

$$= \frac{(3-2) + (1+6)j}{(9+1) + (3-3)j}$$

$$= \frac{1+7j}{10} = \frac{1}{10} + \frac{7}{10}j$$

Complex Arithmetic (Rectangular) Given: a = 3 + 4jb = -5 + 6jFind a + b = (3 + 4i) + (-5 + 6i) = -2 + 10i= (3 + 4i) - (-5 + 6i) = 8 - 2ia – b $= (3+4j)(-5+6j) = -15+18j - 20j + 24j^{2}$ a * b = -39 - 2i $a/b = (3+4j)(-5-6j) = \frac{-15-18j-26j-24j^2}{25+30j-30j-36j^2} = \frac{9-38j}{61}$ 15

Conversion: Rect to Polar (video)

$$\therefore a + jb = r \cos \theta + j r \sin \theta$$
$$= r (\cos \theta + j \sin \theta)$$

Euler's Formula (video)

T

$e^{\circ} = \cos \Theta + \int \sin \Theta$	e ^{jo} =	cosO	+ jsing	A
--	-------------------	------	---------	---

3 ways to express complex number
$$\underline{h}$$
:
 $n = a + jb = r \cos \theta + j r \sin \theta$ (Rectangular
 $= r(\cos \theta + j \sin \theta)$
 $= re^{j\theta}$ (Exponential
Form)
 $= r \angle \theta$ (Polar Form)

Polar to Rect (and back)

- Convert a = 2 3j and b = -4 + 5j
- to polar form: - to poid 10111. a = 2 - 3j $r = \sqrt{2^2 + (-3)^2} = \sqrt{13} = 3.61$, $\Theta = \tan\left(\frac{-3}{2}\right) = -563$ = 3.61 2-56.30 $b = -4 + 5j \qquad r = \sqrt{(4)^2 + (5)^2} = \sqrt{41} = 6.40, \theta = \tan(\frac{5}{-4}) = -51.3 + 180$ = 128.6 $= 6.40 L lag^{\circ}$ • Convert $\dot{c} = 2 < 30^{\circ}$ and $d = 4 < 200^{\circ}$ – To rectangular form $c = 2 \angle 30^{\circ} = 2 \cos 30 + j 2 \sin 30 = 1.73 + j$
 - $d = 4 \angle 200^{\circ} = 4 \cos 200 + j 4 \sin 200 = -3.75 1.37 j$

Complex: Add/Multiply in Polar 3 Forms $a + jb = r \angle 0$ $= re^{j0}$ Adding: $r \angle 0 + s \angle \phi = re^{j0} + se^{j0}$

$$\frac{Multiplying}{(r \angle \Theta)(s \angle \phi)} = v e^{j\Theta} s e^{j\phi} = r \cdot s e^{j(\Theta + \phi)}$$
$$= v s \angle (\Theta + \phi)$$

convert to Rectangulan then add

$$(3 \angle 45)(-2 \angle 15) = -6 \angle 60 = 6 \angle 240$$

 $(3 \angle 45)(-2 \angle 15) = -6 \angle 60 = 6 \angle 240$
 $(3 \angle 45)(-2 \angle 15) = -6 \angle 60 = 6 \angle 240$
 $(3 \angle 45)(-2 \angle 15) = -6 \angle 60 = 6 \angle 240$

Complex: Divide in Polar (video)

Dividing use law of exponents again:
$$a^n = a^n$$

$$\frac{r \angle \Theta}{s \angle \phi} = \frac{r e^{j\Theta}}{s e^{j\Phi}} = \frac{r}{s} e^{j(\Theta - \phi)} = \frac{r}{s} \angle (\Theta - \phi)$$

$$\frac{3\angle 45}{2\angle 15} = \frac{3}{2} \angle (45 - 15) = (.5 \angle 30^{\circ})$$

$$\frac{1}{3\angle 10^{\circ}} = \frac{1\angle 0^{\circ}}{3\angle 10^{\circ}} = \frac{1}{3} \angle (0 - 10) = \frac{1}{3} \angle -10^{\circ}$$

Summary: Mathematic operation of complex numbers

http://www.1728.com/compnumb.htm

- 1. Addition
- 2. Subtraction
- 3. Multiplication
- 4. Division
- 5. Reciprocal
- 6. Square root
- 7. Complex conjugate
- 8. Euler's identity

- $z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$
- $z_1 z_2 = (x_1 x_2) + j(y_1 y_2)$

$$z_1 z_2 = r_1 r_2 \angle \phi_1 + \phi_2$$
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \phi_1 - \phi_2$$

$$\frac{1}{z} = \frac{1}{r} \angle -\phi$$

$$\sqrt{z} = \sqrt{r} \angle \phi/2$$

$$z^* = x - jy = r \angle -\phi = re^{-j\phi}$$

$$e^{\pm j\phi} = \cos\phi \pm j\sin\phi$$

Polar Complex Mult/Div

- Given:
- c = 8 < 45
- d = 12 < 250

Find $c * d = (8245)(12250) = 962295^{\circ}$

 $C/d = \frac{8245}{122250} = \frac{2}{3}L(45-250) = \frac{2}{3}Z-205 = \frac{2}{3}L(155)$

c* (complex conj of c) = $(8 \angle 45)^{*} = 8\cos 45 - \frac{1}{3}8\sin 45$ = $8\cos(-45) + \frac{1}{3}\sin(-45) = 8 \angle -45$ 25

Example 3 Calculator Demo!

• Evaluate the following complex numbers:

a.
$$[(5+j2)(-1+j4)-5\angle 60^{\circ}]$$

b.
$$\frac{10+j5+3\angle 40^{\circ}}{-3+j4}+10\angle 30^{\circ}$$

Solution: a. -15.5 + j13.67 b. 8.293 + j2.2

http://ptolemy.eecs.berkeley.edu/eecs20/berkeley/phasors/demo/phasors.html

9.3 Phasor (1)

 A phasor is a complex number that represents the amplitude and initial phase (at t=0) of a sinusoid.

$$A\cos(\omega t + \phi) \leftrightarrow Ae^{j\phi} \leftrightarrow A \angle \phi$$

 It allows us to perform math on sinusoids of the same frequency by using a complex number representation – much easier than trig identities!!

http://ptolemy.eecs.berkeley.edu/eecs20/berkeley/phasors/demo/phasors.html

• Transform a sinusoid to and from the time domain to the phasor domain:

$$v(t) = V_m \cos(\omega t + \phi) \quad \longleftrightarrow \quad V = V_m \angle \phi$$

(time domain) (phasor domain)

- <u>Amplitude</u> and <u>phase difference</u> are two principal concerns in the study of voltage and current sinusoids.
- Phasor will be defined from the <u>cosine function</u> in all our proceeding study. If a voltage or current expression is in the form of a sine, it will be changed to a cosine by subtracting 90 degrees from the phase.
- Note, ϕ is the phase angle of the cosine at t=0

Example 4 9.3 Phasor (5)

Transform the following sinusoids to phasors: $i = 6\cos(50t - 40^\circ) A$

 $v = -4sin(30t + 50^{\circ}) V$

$$I = 6 \angle -40 \land (by \text{ in s pectum})$$

for v , convert to positive cosine:
$$v = -4 \sin(30t + 50) = -4\cos(30t + 50 - 90)$$
$$= 4\cos(30t + 50 + 90)$$
$$\therefore I = 4\angle 140 \lor$$

 $I = 6 \angle -40^{\circ} A$ V = 4 $\angle 140^{\circ} V$ 29

Example 5: 9.3 Phasor (6)

Transform to sinusoids the phasors:

a.
$$V = -10 \angle 30^{\circ} V$$

b.
$$I = j(5 - j12) A$$

a)
$$v(t) = -10 \cos(wb + 30^{\circ})$$

 $v(t) = 10 \cos(wb + 210^{\circ})$
b) $I = j(s - jla) = 5j - j^{2}la = 12 + 5j$
 $= 1322a.6^{\circ}$
 $: j(t) = 13\cos(wt + 22.6^{\circ}) A$

 $v(t) = 10\cos(\omega t + 210^{\circ}) V, \quad i(t) = 13\cos(\omega t + 22.62^{\circ}) A^{30}$

9.3 Phasor (7)

The differences between v(t) and V:

- v(t) is instantaneous or <u>time-domain</u> representation
 <u>V is the frequency</u> or phasor-domain representation.
- v(t) is time dependent, V is not.
- v(t) is always real with no complex term, V is generally complex.
- <u>Note</u>: Phasor analysis applies only when frequency is constant; it is applied to <u>two or more</u> sinusoid signals only if they have the <u>same frequency</u>.

9.3 Phasor (10)

• we can derive the differential equations for the following circuit in order to solve for $v_o(t)$ in phase domain V_o .

• However, the derivation may sometimes be very tedious.

Is there any quicker and more systematic methods to do it?

9.3 Phasor (11) The answer is YES!

Instead of first deriving the differential equation and then transforming it into phasor domain to solve for $V_{o,}$ we can <u>transform all the RLC</u> <u>components into the phasor domain first</u>, then apply the KCL laws and other theorems to set up a phasor equation involving V_o directly.

But what does an R, L or C look like in the Phasor Domain??

Resistors in the Frequency (Phasor) Domain

- Ohm's Law, Time Domain
 V = i R
 Suppose i(t) = Im cos(wt + \$\$)
 then v(t) = R · Im cos(wt + \$\$)
- Ohm's Law, Frequency Domain

$$T = Im \angle \phi$$

$$\overline{V} = RT = RT_m \angle \phi$$

Same effect as twe domain

Inductors in the Frequency (Phasor) Domain

• Inductor Law, Time Domain $5 \circ pp \circ se \quad i(t) = Im \cos(\omega t + \phi)$ $then \quad v(t) = \frac{1}{dt} = -\omega L Im \sin(\omega t + \phi)$ $= -\omega L \operatorname{Im} \cos(\omega t + \phi - 90) \operatorname{add} 180^{\circ}$ $= \omega L \operatorname{Im} \cos(\omega t + \phi + 90)$

Inductor Law, Frequency Domain

$$\mathbf{I} = \mathbf{I}_{m} \angle \phi$$

$$\mathbf{V} = \omega \mathbf{L} \mathbf{I}_{m} \angle (\phi + 90) = \omega \mathbf{L} \mathbf{I}_{m} e^{\mathbf{j}(\phi + 90)}$$

$$= \omega \mathbf{L} \mathbf{I}_{m} e^{\mathbf{j}\phi} e^{\mathbf{j}\theta} = \omega \mathbf{L} \mathbf{I}_{m} e^{\mathbf{j}\phi} (\mathbf{j}) = \mathbf{j} \omega \mathbf{L} \mathbf{I}_{m}$$

$$\mathbf{V} = (\mathbf{j} \omega \mathbf{L} \mathbf{I}) \qquad \mathbf{J}_{ame as j} \qquad \mathbf{J}_{ame as j} \qquad \mathbf{J}_{ame as j}$$

Capacitors in the Frequency (Phasor) Domain

• Capacitor Law, Time Domain $\int_{C_{t}} = C \frac{dv}{dt}$

Suppose $u(t) = Vm \cos(\omega t + \phi)$ then $i(t) = C \frac{du}{dt} = -\omega C Vm \sin(\omega t + \phi)$ $= \omega C Vm \cos(\omega t + \phi + 90)$

Capacitor Law, Frequency Domain

$$\mathbf{I} = V_{m} \angle \phi$$

$$\mathbf{I} = j_{w} \subset \mathbf{V} \quad (\text{ same derivation as Inductor})$$

Therefore $\mathbf{V} = \mathbf{I}_{jw}, \text{ or } \quad \mathbf{V} = -j_{w} \mathbf{I}_{w}$

9.4 Phasor Relationships for Circuit Elements (1)

9.4 Phasor Relationships for Circuit Elements (2)

Summary of voltage-current relationship		
Element	Time domain	Frequency domain
R	v = Ri	V = RI
L	$v = L \frac{di}{dt}$	$V = j\omega LI$
С	$i = C \frac{dv}{dt}$	$V = \frac{I}{j\omega C} = \frac{j}{\omega c}$

Example 7A

If current $i(t) = 5 \cos(100t + 30^\circ) mA$ is applied to a 2 mH inductor, calculate the voltage, v(t), across the inductor.

$$\mathbf{I} = j_{W} \mathbf{L} \mathbf{I} = j(100)(.002)(5230)$$

= $j(1230)$
= $(1290)(1230) = 12120^{0}$

$$\therefore v(t) = cos(100t + 120') V$$

Example 7B

If voltage $v(t) = 6\cos(100t - 30^\circ)$ V is applied to a 50 µF capacitor, calculate the current, i(t), through the capacitor.

$$\begin{split} \mathbf{M} &= \mathbf{M} \\ \mathbf{j} \mathbf{w} \mathbf{C} \\ \mathbf{W} &= \mathbf{j} \mathbf{w} \mathbf{C} \\ \mathbf{W} &= \mathbf{j} \mathbf{w} \mathbf{C} \\ \mathbf{M} &= \mathbf{j} \mathbf{c} \mathbf{v} \mathbf{v}^{-6} , \quad \mathbf{M} &= 6 \mathbf{z}^{-30} \\ \mathbf{M} &= \mathbf{j} (\mathbf{v} \mathbf{v}) (\mathbf{s}^{50} \mathbf{x}^{10^{-6}}) (\mathbf{6} \mathbf{z}^{-30}) \\ &= \mathbf{j} (\mathbf{v} \mathbf{v}) (\mathbf{s}^{50} \mathbf{z}^{-30}) \\ &= (\mathbf{1} \mathbf{z} \mathbf{q} \mathbf{v}) (\mathbf{v} \mathbf{v} \mathbf{z}^{-30}) = \mathbf{v} \mathbf{0} \mathbf{z} \mathbf{z} (\mathbf{z}^{-30} + \mathbf{q} \mathbf{v}) \\ &= \mathbf{v} \mathbf{v} \mathbf{z} \mathbf{z}^{-30} \\ &= \mathbf{v} \mathbf{v} \mathbf{z} \mathbf{z}^{-30} = \mathbf{v} \mathbf{z} \mathbf{z}^{-30} \\ &= \mathbf{v} \mathbf{z} \mathbf{z}^{-30} = \mathbf{z} \mathbf{z} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} = \mathbf{z} \mathbf{z} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \\ &= \mathbf{z} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \mathbf{z}^{-30} \\ &= \mathbf{z}^{-30} \mathbf{z}^{-3$$

9.5 Impedance and Admittance (1)

 The <u>impedance Z</u> of a circuit is the <u>ratio of the phasor</u> voltage V to the phasor current I, measured in <u>ohms Ω</u>.

$$Z = \frac{V}{I} = R + jX$$

where R = Re, Z is the resistance and X = Im, Z is the reactance. Positive X is for L and negative X is for C.

• The admittance Y is the <u>reciprocal</u> of impedance, measured in siemens (S).

$$Y = \frac{1}{Z} = \frac{I}{V}$$

9.5 Impedance and Admittance (2)

Impedances and admittances of passive elements				
Element	Impedance	Admittance		
R	Z = R	$Y = \frac{1}{R}$		
L	$Z = j\omega L$	$Y = \frac{1}{j\omega L}$		
С	$Z = \frac{1}{j\omega C} = \frac{-j}{\omega C}$	$Y = j\omega C$		

9.5 Impedance and Admittance (3)

9.5 Impedance and Admittance (4)

After we know how to convert RLC components from time to phasor domain, we can <u>transform</u> a time domain circuit into a phasor/frequency domain circuit.

Hence, we can apply the KCL laws and other theorems to <u>directly</u> set up phasor equations involving our target variable(s) for solving.

Example 8 determine $v(t)$ and $i(t)$.
1) Tind CL +
$Z_{L} = j(10)(12) = jZ \qquad v_{s} = 5\cos(10t) \textcircled{P} Z_{T} \qquad 0.2 \text{ H}$
-> Find Z-
$Z_{T} = 4 + Z_{L} = 4 + j\lambda$
3) Find phason $\overline{M}_{s} = 520^{\circ}$
4) Use Ohm's Law to find Is = <u>Is</u> = <u>(4+jd</u>)
$\mathbf{I}_{s} = \frac{5\angle0^{\circ}}{\sqrt{4^{2}+\lambda^{2}}\angle\tan(\frac{2}{4})} = \frac{5\angle0^{\circ}}{4.47\angle26.57^{\circ}} = 1.118\angle-26.56^{\circ}$
$\dot{r}_{s}(t) = 1.118\cos(10t - 26.56)$
5) Use Ohm's Law to find $\mathbf{T} = \mathbf{T}_{S} \mathbf{Z}_{L} = (1.118L - 26.56)(ja)$ = 2.24 $\angle (-26.56 + 90) = 2.24 \angle (63.43)$
Answers: $i(t) = 1.118\cos(10t - 26.56^\circ) A; v(t) = 2.236\cos(10t + 63.43^\circ) V_{4}$

9.6 Kirchhoff's Laws in the Frequency Domain (1)

- Both KVL and KCL hold in the <u>phasor domain</u> or more commonly called <u>frequency domain</u>.
- Moreover, the variables to be handled are <u>phasors</u>, which are <u>complex numbers</u>.
- All the mathematical operations involved are now in complex domain.

9.7 Impedance Combinations (1)

- The following principles used for DC circuit analysis all apply to AC circuit.
- For example:
 - a. voltage division
 - b. current division
 - c. circuit reduction
 - d. impedance equivalence
 - e. Y- Δ transformation

9.7 Impedance Combinations (2)

Example 9 Determine the input impedance of the circuit in figure below at $\omega = 10$ rad/s. $2 \text{ mF} = 20 \Omega$ 2 H

<u>Answer</u>: $Z_{in} = 32.38 - j73.76$

Handouts

Example 1

Given a sinusoid, $5\sin(4\pi - 60^{\circ})$, calculate its amplitude, phase, angular frequency (ω , rad/s), period, and cyclical frequency (f, Hz).

Amplitude = 5, phase = -60° , angular frequency = 4π rad/s, ₅₁ Period = 0.5 s, frequency = 2 Hz.

Example 2

Find the phase angle between $i_1 = -4\sin(377t + 25^\circ)$ and $i_2 = 5\cos(377t - 40^\circ)$, does i_1 lead or lag i_2 ?

i_1 leads i_2 by 155°. 52

Complex Arithmetic (Rectangular) Given: a = 3 + 4jb= -5 + 6j Find a + b a – b a * b

a / b

Polar to Rect (and back)

• Convert a = 2 - 3j and b = -4 + 5j

- to polar form:

• Convert $c = 2 < 30^{\circ}$ and $d = 4 < 200^{\circ}$ – To rectangular form

Polar Complex Mult/Div

Given: c = 8<45 d = 12<250 Find c * d

c / d

c* (complex conj of c)

Example 4 9.3 Phasor (5)

Transform the following sinusoids to phasors:

$$i = 6\cos(50t - 40^{\circ}) A$$

 $v = -4sin(30t + 50^{\circ}) V$

$$I = 6 \angle -40^{\circ} A$$

 $V = 4 \angle 140^{\circ} V$ 56

Example 5: 9.3 Phasor (6)

Transform to sinusoids the phasors:

a.
$$V = -10 \angle 30^{\circ} V$$

b.
$$I = j(5 - j12) A$$

 $v(t) = 10\cos(\omega t + 210^{\circ}) V, \quad i(t) = 13\cos(\omega t + 22.62^{\circ}) A$ ⁵⁷

Example 7A

If current $i(t) = 5 \cos(100t + 30^\circ) mA$ is applied to a 2 mH inductor, calculate the voltage, v(t), across the inductor.

<u>Answer</u>: v(t) = <u>cos(100t + 120°</u>) <u>V</u>

Example 7B

If voltage $v(t) = 6\cos(100t - 30^\circ)$ V is applied to a 50 µF capacitor, calculate the current, *i*(*t*), through the capacitor.

<u>Answer</u>: i(t) = <u>30 cos(100t + 60°</u>) <u>mA</u>

<u>Answers</u>: $i(t) = 1.118\cos(10t - 26.56^{\circ}) A$; $v(t) = 2.236\cos(10t + 63.43^{\circ}) V$

9.7 Impedance Combinations (2)

Example 9 Determine the input impedance of the circuit in figure below at $\omega = 10$ rad/s.

Answer:
$$Z_{in} = 32.38 - j73.76$$

Ex 10

The circuit is operating in the sinusoidal steady state. Find the steady-state expression for $v_o(t)$ if $v_g = 64 \cos 8000t$ V.

 $vo(t) = -32 \sin(8000t)$ (or $32\cos(8000t + 90)$)