ENGR 12

Part I. Drills -- 1 point each

Find the equivalent resistance measured at terminals a and b. Remember all currents in a series path are the same. All voltages across parallel paths are the same.
1)

$R=4 \|(9+7)$
$=\frac{4 \cdot 16}{9+16}=3.2 \Omega$
2)

(b)
$R_{a b}=4+10 \|(3+5+7)$
$=4+\frac{10 \cdot 15}{10+15}=4+6=10 \mathrm{~kg}$
3)

$$
\begin{aligned}
R_{Q} b= & 500+400+600 / / 1200+300 \\
=1200+\frac{600 \cdot 1200}{1800} & =1200+900 \\
& =1600 \Omega
\end{aligned}
$$

4) Use voltage division to find the voltages vO and vi
a) This is Prob 2.27 in your text

Using voltage division,

$$
V_{o}=\frac{4}{4+16}(16 \mathrm{~V})=\underline{6.4 \mathrm{~V}}
$$

5) Find the current i using current division

$$
i=\frac{10 \mathrm{~A} \cdot 10 \Omega}{(10+11) \Omega}=4,76 \mathrm{~A}
$$

b) Note V 1 is measured across the $36|\mid 12$ combination

$$
R_{x}=12 \| 36=9 \Omega
$$

$$
V_{1}=\frac{50.9}{9+74}=5.42 \mathrm{~V}
$$

$$
R_{x}=6+5 / /(8+12)
$$

$$
=6+\frac{5 \cdot 20}{25}=6+4=10 \Omega
$$

$$
i x=\frac{10 \mathrm{~A} \cdot 10 \Omega}{(10+10) \Omega}=5 \mathrm{~A}, \quad i=\frac{i x \cdot 5}{5+8+12}=\frac{25}{25}=1 \mathrm{~A}
$$

6) Convert the Wye to Delta and the Delta to Wye
a. this is 2.48a
b. this is 2.49a

$$
\begin{aligned}
& \text { (a) } \begin{array}{l}
\mathrm{R}_{\mathrm{a}}= \\
\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{3} \mathrm{R}_{1} \\
\mathrm{R}_{3}
\end{array}=\frac{100+100+100}{10}=30 \\
& \mathrm{R}_{\mathrm{a}}=\mathrm{R}_{\mathrm{b}}=\mathrm{R}_{\mathrm{c}}=\mathbf{3 0 \Omega}
\end{aligned}
$$

(a) $\quad \mathbf{R}_{1}=\frac{\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{c}}}=\frac{12 * 12}{36}=4 \Omega$

$$
R_{1}=R_{2}=R_{3}=\underline{4 \Omega}
$$

Part II. Assisted Problem Solving - 2 pts each

2.35 Calculate V_{o} and I_{o} in the circuit	Combining the versions in parallel, $\begin{aligned} & 70\left\\|30=\frac{70 \times 30}{100}=21 \Omega, \quad 20\right\\| 5=\frac{20 \times 5}{25}=4 \Omega \\ & \mathrm{i}=\frac{50}{21+4}=2 \mathrm{~A} \\ & \mathrm{v}_{\mathrm{i}}=21 \mathrm{i}=42 \mathrm{~V}, \mathrm{v}_{0}=4 \mathrm{i}=8 \mathrm{~V} \\ & \mathrm{i}_{1}=\frac{\mathrm{v}_{1}}{70}=0.6 \mathrm{~A}, \mathrm{i}_{2}=\frac{\mathrm{v}_{2}}{20}=0.4 \mathrm{~A} \end{aligned}$ At node a, KCL must be satisfied $\mathrm{i}_{1}=\mathrm{i}_{2}+\mathrm{I}_{0} \longrightarrow 0.6=0.4+\mathrm{I}_{0} \longrightarrow \mathrm{I}_{0}=0.2 \mathrm{~A}$ Hence $\mathrm{V}_{0}=\mathbf{8 \mathrm { V }}$ and $\mathrm{I}_{0}=\mathbf{0 . 2 \mathrm { A }}$
2.44 For the circuit obtain the equivalent resistance at terminals $a-b$.	Convert Y to Delta to obtain $\begin{aligned} R_{1}= & \frac{20 \times 20+20 \times 10+10 \times 20}{10}=\frac{800}{10}=80 \Omega \\ & R_{2}=\frac{800}{20}=40 \Omega=R_{3} \end{aligned}$ The circuit becomes that shown below. b $\begin{aligned} & \mathrm{R}_{1} / / 0=0, \quad \mathrm{R}_{3} / / 5=40 / / 5=4.444 \Omega \\ & R_{a b}=R_{2} / /(0+4.444)=40 / / 4.444=4 \Omega \end{aligned}$

9) Find V in the following circuit

We need to find R_{oq} and apply voltage division. We first tranform the Y network to Δ.

$\mathrm{R}_{\mathrm{ab}}=\frac{15 \times 10+10 \times 12+12 \times 15}{12}=\frac{450}{12}=37.5 \Omega$
$\mathrm{R}_{\mathrm{ac}}=450 /(10)=45 \Omega, \mathrm{R}_{\mathrm{bc}}=450 /(15)=30 \Omega$
Combining the resistors in parallel,

$$
\begin{gathered}
30 \| 20=(600 / 50)=12 \Omega \\
37.5 \| 30=(37.5 \times 30 / 67.5)=16.667 \Omega \\
35 \| 45=(35 \times 45 / 80)=19.688 \Omega \\
\mathrm{R}_{\mathrm{qq}}=19.688 \|(12+16.667)=11.672 \Omega
\end{gathered}
$$

By voltage division,

$$
\mathrm{v}=\frac{11.672}{11.672+16} 100=\underline{\mathbf{4 2 . 1 8} \mathbf{~ V}}
$$

