ENGR 12 Assignment 10 Due: next wed

Part I. Drills -- 1 point each

For questions 1 and 2, assume a = 3 - 4j, b = -6j, $c = 8<-45^{\circ}$, $d = 15<250^{\circ}$

1)	Express the following in Rectangular	2)	Express the following in Polar form:	
	form:		a. b 6 < -90	
	a. (a + b) 3-10j		b. b* 6<+90	
	b. (a/b) .667 + .5j		c. c/d .533 < 65	
	c. c 5.657 – 5.657j		d. ab 30<-143	
	d. c* 5.657 + 5.657j		e. a+d 18.22 <-96.7	
	e. (c + d) .5266 -19.75j			

Complete the missing cells of the table defining three sinusoids and express each as $i(t) = Im \cos(\omega t + \varphi)$

	Amplitude		Angular Frequency	Period	Peak-to- Peak	Phase
$i_1(t)$	7.5 mm	159.2 Hz	1000 rad/s	6.28 ms	15 mA	45°
$i_2(t)$	5A	2642	125.6 Rls	50 ms	10 -4	00
$i_3(t)$	1.5 MA	25,000 Hz	157 KRad/s	40MS	3 μΑ	-90°

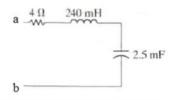
 $i1(t) = 7.5\cos(1000t + 45^{\circ})$ mA

 $i2(t) = 5\cos(125.6t) A$

 $i3(t) = 1.5 \cos(157027t - 90^{\circ})$

4) Use the concept of a phasor to convert the following expressions into a simpler form:

- a. 100cos(500t 43°) + 45cos(500t + 120°)
- 58.46<-30
- b. 200cos(377t + 75°) + 50sin(377t 100°)
- 201.8 < 89.3
- c. $5\cos(wt) + 5\cos(wt+120^{\circ}) + 5\cos(wt-120^{\circ})$


a) w = 5000, ZC = -j/(wC) = -8000j, ZL = 0.8j

0

5) Find the complex impedance AND admittance of the following at a-b, given w = 5000 Radians/sec, express in both polar and rectangular form:

Zab = ZL + ZC||R = 99.9844 - 0.4498i = 99.985 < -0.26°

$$160 \,\mu\text{H}$$
 $100 \,\Omega$
 $25 \,\text{nF}$

 $Yab = 1/Zab = .01 + 0i = .01 < .26^{\circ}$

Yab = $1/Zab = (2.78 - 834j) \times 10^{-6}$ = $834 \times 10^{-6} < -89.8^{\circ}$

Part II. Assisted Problem Solving - 2 pts

6) Find the the current through the 25nF cap in 5a) when a current source of 10cos(5000t + 120°) is applied at a-b. Express your answer in both phasor and time-domain form	Plan 1) Convert the source current into phasor form 2) Use the current divider formula to find phasor Ic 3) Convert phasor Ic to time domain Is = 10<120 Ic = Is*100/(100 + ZC) ZC = -8000j Ic = .125 < -150 ic = .125 cos(5000t - 150°) A
7) Find the voltage across the 2.5mF cap in 5b) when a voltage source of 50cos(5000t – 90°) is applied at a-b. Express your answer in both phasor and timedomain form	PLAN 1) Convert the source voltage into phasor form 2) Use the voltage divider formula to find phasor Vc 3) Convert phasor Vc to time domain Vs = 50<-90 Vc = Vs* ZC/(R + ZL + ZC) Vc = 0.003 < 90.19 vc = 3 cos(5000t + 90.19°) mV

Part III. Unassisted Problem Solving – 3 points

8) What value of w will the impedance at a-b in problem 5b become purely resistive?

```
when jwL - j/(wC) = 0

wL = 1/wC

w^2L = 1/C

w = 1/sqrt(LC) = 40.824 rad/sec
```