\qquad

1) How much energy is delivered to the headlight if it is left on overnight for 8 hours? Express your answer in kW-hours.	
$\begin{aligned} & \mathrm{P}=5^{*} 12=60 \mathrm{~W} \\ & \mathrm{E}=\mathrm{P}^{*} \mathrm{t}=60 * 8=480 \mathrm{~W} \text {-hours }=.48 \mathrm{~kW}-\mathrm{h} \end{aligned}$	
2) Find I in the circuit on the right: $\mathrm{I}=-75 / 10=-7.5 \mathrm{~A}$	
3) How much total current is provided by the 75 V source for the circuit shown in Prob 2?	KCL: $\quad \mathrm{I}=5 \mathrm{~A}+3 \mathrm{~A}+15 \mathrm{~A}+7.5 \mathrm{~A}=30.5 \mathrm{~A}$
4) What is the Voltage change across the 5 A current source for the circuit in Prob 2? Reference + to the head of the current arrow, and - to the tail.	KVL: $-150+\mathrm{V}_{5 A}+75=0$, therefore $\mathrm{V}_{5 A}=75$ Volts
5) For the circuit on the right, what is the power associated with the current source and the voltage source and indicate whether each is absorbing or releasing power. $\begin{aligned} & P_{2 \mathrm{~A}}=2 * 55=110 \mathrm{~W} \text { (absorbing) } \\ & P_{40 \mathrm{~V}}=-2 * 75=-150 \mathrm{~W} \text { (releasing) } \end{aligned}$	
6) What is the power associated with the resistor for the circuit in Prob 5? $\mathrm{P}_{\mathrm{R} 10}=2^{2} * 10=40 \text { Watts } \mathrm{P}_{\mathrm{R} 10}=2^{2} * 10=40 \text { Watts }$	

7) What is the equivalent resistance from A to B ?
Req $=1+0| | 2| | 3=1 \mathrm{Ohm}$

14) Express ix in terms of Va for the circuit in \#11 $\mathrm{ix}=-\mathrm{Va} / 2$	15) Substitute your answer for 14) for ix in the dependent source to arrive at an expression for Vb in terms of Va : $V b=-2 i x=-2 *-V a / 2=V a$
16) For the Mesh Current circuit on the right, express Vs in terms of ia: $\text { Vs }=-15 \text { ia }$	
17) Express the mesh current for Mesh A without using Vs (substitute answer for \#16): $\begin{aligned} & 15 \text { ia }-4^{*}(-15 i a)+5(\text { ia-ic })=0 \\ & 80 \text { ia }-5 \text { ic }=0 \end{aligned}$	18) Express the mesh current for Mesh B without using Vs (substitute your answer for \#16) $\begin{aligned} & 4^{*}(-15 i a)+2 i b+4=0 \\ & 60 \text { ia }+2 i b=-4 \end{aligned}$
19) By inspection, what is the current ic? $\text { ic }=-.1 \mathrm{~A}$	
20) What is the Thevenin Voltage of the Circuit shown: (no current flows thru 25 Ohm resistors) $\text { Vth }=\mathrm{V} 4 \mathrm{~A}=60+4^{*}(20+20)=220 \mathrm{~V}$	
21) What is the Thevenin Resistance of the circuit from Problem 20? (4A source is like open cct, 60 V src like short) Rth $=20+25+20+25=90$ Ohms	22) What value of Rload will result in maximum power transferred to the load resistor? Rload $=$ Rth $=90$ Ohms

23) What is the value of $\mathrm{V}+$ at the Op-Amp input?
$\mathrm{V}+=5 \mathrm{~V} * 25 /(100+25)=1 \mathrm{~V}$

32) Is the circuit over, under or critically damped? overdamped	33) If $\mathrm{Vo}=10 \mathrm{~V}$ and $\mathrm{Io}=2 \mathrm{~mA}$, calculate v , and $d v / d t$ at $t=0^{+}$ $\begin{aligned} & \mathrm{v}\left(0^{+}\right)=10 \\ & \mathrm{dv} / \mathrm{dt} \text { at } \mathrm{t}=0^{+} \\ & =\mathrm{ic} / \mathrm{C}=(-2-(10 \mathrm{~V} / 1 \mathrm{~K}) / \mathrm{C} \\ & \\ & \\ & =-12 \mathrm{~mA} / 1.5 \mathrm{uF}=-8000 \mathrm{~V} / \mathrm{s} \end{aligned}$	
34) Suppose $v(t)=220 \cos \left(50 t-67^{\circ}\right)$ volts a) What is the radian frequency, w in Rad/sec? $\mathrm{w}=50 \mathrm{R} / \mathrm{s}$ b) What is the frequency in Hz ? $\mathrm{f}=\mathrm{w} / 2 \mathrm{pi}=50 / 6.28=7.96 \mathrm{~Hz}$ c) What is the period, T ? $\mathrm{T}=1 / \mathrm{f}=.1256 \mathrm{sec}$ d) What is the rms value of $v(t)$? $\text { Vrms }=220 / \text { sqrt }(2)=155.6$	35) Complex Math a) Convert $50-45 \mathrm{j}$ to polar form $\begin{aligned} & \text { Mag }=\operatorname{sqrt}\left(50^{2}+45^{2}\right)=67.2 \\ & \text { Phi }=\operatorname{atan}(-45 / 50)=-41.9 \text { degrees } \end{aligned}$ b) Convert $30 / 25$ to rectangular form $\text { Ans= } 27.1+12.6 j$ c) Find $(25 /-60) /(40+10 \mathrm{j})$ in phasor form: $\text { Ans }=.606 \angle-74$	
36) For the $A C$ circuit to the right, find Zc and $\mathrm{Z}_{\mathrm{L}} \mathrm{w}=2 \mathrm{pi}{ }^{*} 1000=6283$ $Z c=-j /(w C)=-31.8 j$ $Z L=j w L=62.8 j$	$v_{s}(t)=70 \cos \left(2 \pi \cdot 1000 t+30^{\circ}\right) \mathrm{V}$	
37) Find the equivalent impedance of the parallel branches for the circuit in problem 36: $\begin{aligned} Z p & =Z L \\|(30+Z c)=62.8 j^{*}(30-31.8 \mathrm{j}) /(30+31 \mathrm{j}) \\ & =(1997+1884 \mathrm{j}) /(30+31 \mathrm{j})=63.6 /-2.89 \end{aligned}$	38) Find an expression for the phasor voltage V across the 10 mH inductor: $\begin{aligned} & V=V s Z p /(50+Z p)= \\ & =70 / 30 * 63.6 /-2.89 / 113 /-1.6=39.3 / 28.7 \end{aligned}$	
39) Convert your answer to 38) into the time domain: $v(t)=39.3 \cos (2 \text { pi } 1000 t+28.7)$	40) If the current into a load is $\mathrm{I}=40 \angle 35$ and the Voltage is $\mathrm{V}=10 \angle-20$, Determine the: a) Average power $\begin{aligned} P: & =1 / 2 * 40 * 10 * \cos (-20-35) \\ & =200 \cos (-55)=115 \mathrm{~W} \end{aligned}$ b) Reactive power $\mathrm{Q}:=200 \sin (-55)=-164 \mathrm{var}$	

	c) Complex Power S: = 115-164j VA
41) A 3 phase Y-source has phase voltages: $\text { Van }=120 / 50, ~ V b n=120 / 170, V c n=120 /-40$ Find the line voltages Vab, Vbc, and Vca $\begin{aligned} & V a b=207 \not 20 \\ & V b c=207 / 140 \\ & V c a=207 /-70 \end{aligned}$	
42) Write the mesh equation for mesh 2 in the transformer circuit on the right: $\begin{aligned} & j 6 I 2+j 3 I 1-j 4 I 2+10 I 2=0 \\ & \text { or, } \\ & (j 3) I 1+(10+j 2) I 2=0 \end{aligned}$	

