 How much energy is delivered to the headlight if it is left on overnight for 8 hours? Express your answer in kW-hours. 	Headlight 12 volt Automobile Battery
P = 5*12 = 60W E = P*t = 60*8 = 480 W-hours = .48 kW-h	
2) Find I in the circuit on the right: I = - 75/10 = -7.5A	5A 30Ω 25Ω 5Ω 75V - 10Ω 1
 How much total current is provided by the 75 V source for the circuit shown in Prob 2? 	KCL: I = 5A + 3A + 15A + 7.5A = 30.5A
 What is the Voltage change across the 5A current source for the circuit in Prob 2? Reference + to the head of the current arrow, and – to the tail. 	KVL: $-150 + V_{5A} + 75 = 0$, therefore $V_{5A} = 75$ Volts
5) For the circuit on the right, what is the power associated with the current source and the voltage source and indicate whether each is absorbing or releasing power. $P_{2A} = 2*55 = 110 \text{ W (absorbing)}$ $P_{40V} = -2*75 = -150 \text{ W (releasing)}$	2A 10 Ω 75V -
6) What is the power associated with the resistor for the circuit in Prob 5? $P_{R10} = 2^{2*}10 = 40 \text{ Watts } P_{R10} = 2^{2*}10 = 40 \text{ Watts}$	

14) Express ix in terms of Va for the circuit in #11 ix = -Va / 2	 15) Substitute your answer for 14) for ix in the dependent source to arrive at an expression for Vb in terms of Va: Vb = -2ix = -2 * - Va/2 = Va
16) For the Mesh Current circuit on the right, express Vs in terms of ia: Vs = - 15 ia	$ \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$
 17) Express the mesh current for Mesh A without using Vs (substitute answer for #16): 15 ia - 4*(-15ia) + 5(ia-ic) = 0 80 ia - 5 ic = 0 	 18) Express the mesh current for Mesh B without using Vs (substitute your answer for #16) 4*(-15ia) + 2ib + 4 = 0 60 ia + 2 ib = -4
19) By inspection, what is the current ic? ic =1 A	
20) What is the Thevenin Voltage of the Circuit shown: (no current flows thru 25 Ohm resistors) Vth = V4A = 60 + 4*(20+20) = 220V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 21) What is the Thevenin Resistance of the circuit from Problem 20? (4A source is like open cct, 60V src like short) Rth = 20 + 25 + 20 + 25 = 90 Ohms 	22) What value of Rload will result in maximum power transferred to the load resistor? Rload = Rth = 90 Ohms

23) What is the value of V+ at the Op-Amp input?	25 K
V+ = 5V * 25/(100 + 25) = 1 V	$100 K$ $\downarrow \downarrow $
24) Assuming the Op-amp is in its linear range, what is the value of V- ?	25) Still assuming linearity, what is the output voltage Vo?
V- = 1V	V- / 100 + (V Vo)/25 = 0 V- + 4(V Vo) = 0 Vo = 5V- / 4 = 1.25 V
 26) For the circuit at right, prior to t=0 the switch has been closed a long time. What is the resistance seen by the 12V supply before the switch opens? Prior to t=0, Req = 1.5 + 1.5 1 = 1.5 + 1.5/2.5 Req = 2.1 K-Ohm 	1.5 K + 12V i L ↓ 30 mH
27) What is the current through the inductor before the switch opens?	28) What is the final value of current through the inductor after the switch has been open a long time?
IL(0-) = (12/ 2.1) * 1/(1 + 1.5) = 2.287 mA	$I_L(f) = 12V / 3k = 4 mA$
29) What is the time constant for the R-L circuit after the switch opens?	30) Write the equation for inductor current as a function of time
Tau = L/ R = 30 mH / 3 kOhm = 10 microsec	$I(t) = i(f) + (i(0) - i(f)) e^{-t/tau} =$ = 4 + (2.287 - 4) e ^{-t/tau} = 4 - 1.73 e ^{-10^5t}
31) For the parallel RLC circuit shown, find alpha, w_o , s1, and s2 alpha = 1/(2RC) = 1/(2*1000*1.5x10 ⁻⁶) = 333 w_o = sqrt(1/LC) = sqrt(1/(2*1.5x10 ⁻⁶)) = 149 s1 = -333 + sqrt(333 ² - 149 ²) = -35 s2 = -333 - sqrt(333 ² - 149 ²) = -631	1.5 uF $(V_0 = 30 H)$ $(V_0 = 1 k)$ $(V_0 =$

32) Is the circuit over, under or critically damped?	33) If Vo = 10V and Io = 2 mA, calculate v, and
overdamped	dv/dt at t=0 ⁺
	$v(0^+) = 10$
	dv/dt at t=0 ⁺ = ic/C = (-2 - (10V/1K) / C
	= -12mA/1.5uF = -8000 V/s
34) Suppose v(t) = 220cos(50t - 67°) volts	35) Complex Math
a) What is the radian frequency, w in Rad/sec?	a) Convert 50 – 45j to polar form
w = 50 R/s	Mag = $sqrt(50^2 + 45^2) = 67.2$
	Phi = atan(-45/50) = -41.9 degrees
b) What is the frequency in Hz?	
f = w/2pi = 50/6.28 = 7.96 Hz	b) Convert 30 <u>/25</u> to rectangular form
	Ans= 27.1 + 12.6j
c) What is the period, T?	c) Find $(25/-60)/(40 + 10i)$
T = 1/f = .1256 sec	in phasor form:
d) What is the rms value of v(t)?	Ans = .606 <u>/ -74</u>
Vrms = 220/sqrt(2) = 155.6	
36) For the AC circuit to the right, find	500 54E
Z_{c} and Z_{L} w = 2pi*1000 = 6283	
T (// 0) 0 (0)	+ - (1)
2c = -J/(WC) = -31.8J	(+) 10mH 3 0(E) \$ 30.2
71 - ind - 62.9i	$v_{s}(t)$
ZL = JWL = 62.8J	
	$\sqrt{5}(t) = 10 \cos(2\pi \cdot 1000t + 30^{\circ}) V$
37) Find the equivalent impedance of the parallel	38) Find an expression for the phasor voltage V
branches for the circuit in problem 36:	across the 10 mH inductor:
staticités for the cheat in prosient so.	$V = V_s Z_p / (50 + Z_p) =$
Zp = ZL (30 + Zc) = 62.8j*(30-31.8j)/(30+31j)	= 70/30 * 63.6/-2.89 / 113/-1.6 = 39.3/28.7
= (1997+1884j)/(30+31j) = 63.6 <u>/-2.89</u>	
39) Convert your answer to 38) into the time	40) If the current into a load is
domain:	I = 40/35 and the Voltage is $V = 10/-20$.
	, <u> </u>
v(t) = 39.3 cos(2 pi 1000t + 28.7)	Determine the:
	a) Average power P: = ½ *40*10*cos(-20-35)
	= 200cos(-55) = 115 W
	b) Reactive power Q: = 200sin(-55) = -164 var

	c) Complex Power S: = 115 -164j VA
41) A 3 phase Y-source has phase voltages:	
Van = 120 <u>/50</u> , Vbn = 120 <u>/170</u> , Vcn = 120 <u>/-40</u>	
Find the line voltages Vab, Vbc, and Vca	
Vab = 207 <u>/20</u>	
Vbc = 207 <u>/140</u>	
Vca = 207 <u>/-70</u>	
42) Write the mesh equation for mesh 2 in the	$j3 \Omega$ $i4 \Omega$
transformer circuit on the right:	
j6 I2 + j3I1 -j4I2 + 10I2 = 0	$6\underline{/90^{\circ}} \vee (\mathbf{I}_{1}) j \otimes \Omega \xrightarrow{3} \underset{\bullet}{\otimes} j \otimes \Omega (\mathbf{I}_{2}) \underset{-}{\otimes} 10 \Omega \mathbf{V}_{o}$
or,	
(j3)I1 + (10 + j2)I2 = 0	