Open book, open notes, and use of a laptop equipped with Freemat is allowed.

1) Find the Thevenin equivalent of the circuit at a-b

P 4.73

The node voltage equations are:

$$
\begin{array}{ll}
\frac{v_{1}-40}{2000}+\frac{v_{1}}{20,000}+\frac{v_{1}-v_{2}}{5000} & =0 \\
\frac{v_{2}-v_{1}}{5000}+\frac{v_{2}}{50,000}+\frac{v_{2}-v_{3}}{10,000}+30 \frac{v_{1}}{20,000} & =0 \\
\frac{v_{3}-v_{2}}{10,000}+\frac{v_{3}}{40,000}-30 \frac{v_{1}}{20,000} & =0
\end{array}
$$

In standard form:
$v_{1}\left(\frac{1}{2000}+\frac{1}{20,000}+\frac{1}{5000}\right)+v_{2}\left(-\frac{1}{5000}\right)+v_{3}(0)=\frac{40}{2000}$
$v_{1}\left(-\frac{1}{5000}+\frac{30}{20,000}\right)+v_{2}\left(\frac{1}{5000}+\frac{1}{50,000}+\frac{1}{10,000}\right)+v_{3}\left(-\frac{1}{10,000}\right)=0$
$v_{1}\left(-\frac{30}{20,000}\right)+v_{2}\left(-\frac{1}{10,000}\right)+v_{3}\left(\frac{1}{10,000}+\frac{1}{40,000}\right)=0$
Solving, $\quad v_{1}=24 \mathrm{~V} ; \quad v_{2}=-10 \mathrm{~V} ; \quad v_{3}=280 \mathrm{~V}$
$V_{\mathrm{Th}}=v_{3}=280 \mathrm{~V}$

The mesh current equations are:

$$
\begin{array}{ll}
-40+2000 i_{1}+20,000\left(i_{1}-i_{2}\right) & =0 \\
5000 i_{2}+50,000\left(i_{2}-i_{\mathrm{sc}}\right)+20,000\left(i_{2}-i_{1}\right) & =0 \\
50,000\left(i_{\mathrm{sc}}-i_{2}\right)+10,000\left(i_{\mathrm{sc}}-30 i_{\Delta}\right) & =0
\end{array}
$$

The constraint equation is:
$i_{\Delta}=i_{1}-i_{2}$
Put these equations in standard form:

$$
\begin{array}{ll}
i_{1}(22,000)+i_{2}(-20,000)+i_{\mathrm{sc}}(0)+i_{\Delta}(0) & =40 \\
i_{1}(-20,000)+i_{2}(75,000)+i_{\mathrm{sc}}(-50,000)+i_{\Delta}(0) & =0 \\
i_{1}(0)+i_{2}(-50,000)+i_{\mathrm{sc}}(60,000)+i_{\Delta}(-300,000) & =0 \\
i_{1}(-1)+i_{2}(1)+i_{\mathrm{sc}}(0)+i_{\Delta}(1) & =0
\end{array}
$$

Solving, $\quad i_{1}=13.6 \mathrm{~mA} ; \quad i_{2}=12.96 \mathrm{~mA} ; \quad i_{\mathrm{sc}}=14 \mathrm{~mA} ; \quad i_{\Delta}=640 \mu \mathrm{~A}$ $R_{\mathrm{Th}}=\frac{280}{0.014}=20 \mathrm{k} \Omega$

Finding Rth using a test source: apply 1V source at V3 or Vth. Find io

1) $\mathrm{V} 1 / 2+\mathrm{V} 1 / 20+(\mathrm{V} 1-\mathrm{V} 2) / 5=0$
2) $(\mathrm{V} 2-\mathrm{V} 1) / 5+\mathrm{V} 2 / 50+(\mathrm{V} 2-1) / 10+30 \mathrm{id}=0$
id $=\mathrm{V} 1 / 20$ so swap 1.5 V 1 for 30 id above
3) $\mathrm{io}=1 / 40+(1-\mathrm{V} 2) / 10-30 \mathrm{id}=1 / 40+(1-\mathrm{V} 2) / 10-1.5 \mathrm{~V} 1$

Rearranging

1) $15 \mathrm{~V} 1-4 \mathrm{~V} 2=0$
2) $-10 \mathrm{~V} 1+16 \mathrm{~V} 2+75 \mathrm{~V} 1=5,65 \mathrm{~V} 1+16 \mathrm{~V} 2=5$
(freemat) V1 = .04, V2 = .15, therefore io $=.025+(.85) / 10-.06=0.05 \mathrm{~mA}$,
so Rth $=\mathrm{Vo} / \mathrm{lo}=1 / .05=20 \mathrm{k}$ Ohms
3) The switch has been closed a long time before opening at $t=0$. Find
a. $i_{0}(t)$
b. $v_{o}(t)$

P $8.47 \quad[\mathbf{a}] t<0$:

$$
\begin{aligned}
& i_{o}=\frac{80}{800}=100 \mathrm{~mA} ; \quad v_{o}=500 i_{o}=(500)(0.01)=50 \mathrm{~V} \\
& t>0: \\
& \alpha=\frac{R}{2 L}=\frac{500}{2\left(2.5 \times 10^{-3}\right)}=10^{5} \mathrm{rad} / \mathrm{s} \\
& \omega_{o}^{2}=\frac{1}{L C}=\frac{1}{\left(2.5 \times 10^{-3}\right)\left(40 \times 10^{-9}\right)}=100 \times 10^{8} \\
& \alpha^{2}=\omega_{o}^{2} \quad \therefore \quad \text { critically damped } \\
& \therefore \quad i_{o}(t)=D_{1} t e^{-10^{5} t}+D_{2} e^{-10^{5} t} \\
& i_{o}(0)=D_{2}=100 \mathrm{~mA} \\
& \frac{d i_{o}}{d t}(0)=-\alpha D_{2}+D_{1}=0 \\
& \therefore \\
& \quad D_{1}=10^{5}\left(100 \times 10^{-3}\right)=10,000 \\
& i_{o}(t)=10,000 t e^{-10^{5} t}+0.1 e^{-10^{5} t} \mathrm{~A}, \\
& {\left[\text { b] } v_{o}(t)=D_{3} t e^{-10^{5} t}+D_{4} e^{-10^{5} t}\right.} \\
& v_{o}(0)=D_{4}=50 \\
& C \frac{d v_{o}}{d t}(0)=-0.1
\end{aligned}
$$

OR,

$$
\begin{aligned}
& \text { Vo(t) }=500 \mathrm{lo}(\mathrm{t})+0.0025 \mathrm{dlo}(\mathrm{t}) / \mathrm{dt} \\
& \begin{aligned}
\mathrm{dlo}(\mathrm{t}) / \mathrm{dt} & =10000 \mathrm{t}\left(-10^{\wedge} 5\right) \exp \left(-10^{\wedge} 5 \mathrm{t}\right)+10000 \exp \left(-10^{\wedge} 5 \mathrm{t}\right)+0.1\left(-10^{\wedge} 5\right) \exp \left(-10^{\wedge} 5 \mathrm{t}\right) \\
& =-10^{\wedge 9} \mathrm{t} \exp \left(-10^{\wedge 5 t}\right)+\quad \text { these two terms cancel out }!
\end{aligned}
\end{aligned}
$$

so $\mathrm{Vo}(\mathrm{t})=500(10000 \mathrm{t}) \exp \left(-10^{\wedge} 5 \mathrm{t}\right)+50 \exp \left(-10^{\wedge} 5 \mathrm{t}\right)-25 \times 10^{\wedge} 5 \mathrm{t} \exp \left(-10^{\wedge} 5 \mathrm{t}\right)$
$500\left(10000 \boldsymbol{e}^{-100000 t} t+0.1 \boldsymbol{e}^{-100000 t}\right)-2.5 \times 10^{6} \boldsymbol{e}^{-100000 t} t$
$=250000 t \exp (-100000 t)+50 \exp (-100000 t)$
P $10.18[\mathbf{a}] \frac{1}{j \omega C}=-j 40 \Omega_{i} \quad j \omega L=j 80 \Omega$

$$
\begin{aligned}
& Z_{\mathrm{eq}}=40 \|-j 40+j 80+60=80+j 60 \Omega \\
& \mathrm{I}_{g}=\frac{40 / 0^{\circ}}{80+j 60}=0.32-j 0.24 \mathrm{~A} \\
& S_{g}=-\frac{1}{2} \mathrm{~V}_{g} \mathrm{I}_{g}^{+}=-\frac{1}{2} 40(0.32+j 0.24)=-6.4-j 4.8 \mathrm{VA} \\
& P=6.4 \mathrm{~W}(\text { del }) ; \quad Q=4.8 \mathrm{VAR}(\mathrm{del}) \\
& |S|=\left|S_{g}\right|=8 \mathrm{VA}
\end{aligned}
$$

[b] $\mathrm{I}_{1}=\frac{-j 40}{40-j 40} \mathrm{I}_{g}=0.04-j 0.28 \mathrm{~A}$

$$
\begin{aligned}
& P_{40 \Omega}=\frac{1}{2}\left|\mathrm{I}_{1}\right|^{2}(40)=1.6 \mathrm{~W} \\
& P_{60 \Omega}=\frac{1}{2}\left|\mathrm{I}_{g}\right|^{2}(60)=4.8 \mathrm{~W}
\end{aligned}
$$

$$
\sum P_{\mathrm{diss}}=1.6+4.8=6.4 \mathrm{~W}=\sum P_{\mathrm{dev}}
$$

$[\mathrm{c}] \mathrm{I}_{-j 40 \Omega}=\mathrm{I}_{g}-\mathrm{I}_{1}=0.28+j 0.04 \mathrm{~A}$

$$
\begin{aligned}
& Q_{-j 40 \Omega}=\frac{1}{2}\left|\mathrm{I}_{-j 40 \Omega}\right|^{2}(-40)=-1.6 \mathrm{VAR}(\text { del }) \\
& Q_{380 \Omega}=\frac{1}{2}\left|\mathrm{I}_{g}\right|^{2}(80)=6.4 \mathrm{VAR}(\mathrm{abs}) \\
& \sum Q_{\mathrm{abs}}=6.4-1.6=4.8 \mathrm{VAR}=\sum Q_{\mathrm{dev}}
\end{aligned}
$$

P $9.69 \quad \mathrm{~V}_{g}=4 / 0^{\circ} \mathrm{V}_{\mathrm{i}} \quad \frac{1}{j \omega C}=-j 20 \mathrm{k} \Omega$
Let $\mathrm{V}_{2}=$ voltage across the capacitor, positive at upper terminal Then:

$$
\begin{aligned}
& \frac{\mathrm{V}_{2}-4 / 0^{\circ}}{20,000}+\frac{\mathrm{V}_{2}}{-j 20,000}+\frac{\mathrm{V}_{2}}{20,000}=0_{i} \quad \therefore \mathrm{~V}_{2}=(1.6-j 0.8) \mathrm{V} \\
& \frac{0-\mathrm{V}_{2}}{20,000}+\frac{0-\mathrm{V}_{o}}{10,000}=0_{i} \quad \mathrm{~V}_{o}=-\frac{\mathrm{V}_{2}}{2} \\
& \therefore \mathrm{~V}_{o}=-0.8+j 0.4=0.89 / 153.43^{\circ} \mathrm{V} \\
& v_{o}=0.89 \cos \left(200 t+153.43^{\circ}\right) \mathrm{V}
\end{aligned}
$$

2) The switch has been closed a long time before opening at $\mathbf{t}=\mathbf{0}$. Find
a. $i_{0}(t)$
b. $v_{o}(t)$

3) Find the average power, the reactive power and the apparent power supplied by the voltage source in the circuit if $\mathrm{vg}=40 \cos (1000000 \mathrm{t})$ Volts (this is magnitude, not rms).

4) The sinusoidal voltage source $\mathrm{Vg}=4 \cos (200 \mathrm{t})$. If the $\mathrm{op}-\mathrm{amp}$ is ideal, find the output voltage $\mathrm{Vo}(\mathrm{t})$

