
Designing

Classes

Appendix D

Slides by Steve Armstrong

LeTourneau University

Longview, TX
2007,Prentice Hall

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Chapter Contents
• Encapsulation

• Specifying Methods

• Java Interfaces

 Writing an Interface

 Implementing an Interface

 An Interface as a Data Type

 Generic Types Within an Interface

 Type Casts Within an Interface Implementation

 Extending an Interface

 Interfaces Versus Abstract Classes

 Named Constants Within an Interface

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Chapter Contents

• Choosing Classes

 Identifying Classes

 CRC Cards

 The Unified Modeling Language

• Reusing Classes

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Encapsulation

• Hides the fine detail of the inner workings

of the class

 The implementation is hidden

 Often called "information hiding"

• Part of the class is visible

 The necessary controls for the class are left

visible

 The class interface is made visible

 The programmer is given only enough

information to use the class

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Encapsulation

Fig. 3-1 An automobile's controls are visible to the

driver, but its inner workings are hidden.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Abstraction

• A process that has the designer ask what

instead of why

 What is it you want to do with the data

 What will be done to the data

• The designer does not consider how the

class's methods will accomplish their goals

• The client interface is the what

• The implementation is the how

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Abstraction

Fig. 3-2 An interface

provides well-regulated

communication between a

hidden implementation and

a client.

• Question 1 How does a client interface

differ from a class implementation?

• Question 2 Think of an example, other

than an automobile, that illustrates

encapsulation. What part of your

example corresponds to a client interface

and what part to an implementation?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

1. A client interface describes how to use the
class. It contains the headers for the class’s
public methods, the comments that tell you how
to use these methods, and any publicly defined
constants of the class. The implementation
consists of all data fields and the definitions of all
methods, including those that are public, private,
and protected.

2. A television is one example. The remote
control and the controls on the TV form the
client interface. The implementation is inside
the TV itself.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Specifying Methods

• Specify what each method does

• Precondition

 Defines responsibility of client code

• Postcondition

 Specifies what will happen if the preconditions

are met

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Specifying Methods

• Responsibility

 Precondition implies responsibility for
guarantee of meeting certain conditions

• Where to place responsibility

 Client? or …

 Method?

• Best to comment this clearly before
method's header

 Also good to have method check during
debugging

• Question 3 Assume that the class Square

has a data field side and the method

setSide to set the value of side. What

header and comments can you write for

this method? Keep in mind a precondition

and postcondition as you do this.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

3. Here are three possibilities:

/** Sets the side of the square to a new value.

 @param newSide a real number >= 0 */

public void setSide(double newSide)

/** Sets the side of the square to a new value.

 @param newSide a real number

 @return true if the side is set, or

 false if newSide is < 0 */

public boolean setSide(double newSide)

/** Sets the side of the square to a new value.

 @param newSide a real number

 @throws IllegalArgumentException if newSide is < 0 */

public void setSide(double newSide)

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Assertions

• Assertion is statement of truth about
aspect of a program's logic

 Like a boolean statement that should be true
at a certain point

• Assertions can be written as comments to
identify design logic
// Assertion: intVal >= 0

Question 4 Suppose that you have an array of
positive integers. The following statements

 find the largest integer in the array. What assertion
can you write as a comment after the for loop?

int max = 0;

for (int index = 0; index < array.length; index++)

{

 if (array[index] > max)

 max = array[index];

} // Assertion:

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

4. // Assertion: max is the largest of array[0],..., array[index]

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Assert Statement

 • assert someVal < 0;

• if true, program does nothing

• If false, program execution terminates
 Exception in thread “main” java.lang.AssertionError

• assert sum > 0 : sum;
adds the value of sum to the error message in case sum ≤ 0.

Or

 assert sum > 0 : "sum greater than zero";

• By default, assert statements are disabled at

execution time.

 Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Java Interface

• A program component that contains

 Public constants

 Signatures for public methods

 Comments that describe them

• Begins like a class definition
 Use the word interface instead of class

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Writing an Interface

• Consider geometric figures which have

both a perimeter and an area

• We want classes of such objects to have

such methods

 And we want standardization signatures

• View example of the interface
Measurable

Chapter03CodeSamples.htm

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Java Interface Example

• Recall class Name from previous chapter

• Consider an interface for the class Name

 View example listing

• Note

 Comments of method purpose, parameters,
pre- and post-conditions

 Any data fields should be public, final, and
static

 Interface methods cannot be final

Chapter02CodeSamples.htm
Chapter02CodeSamples.htm
Chapter02CodeSamples.htm
Chapter03CodeSamples.htm

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

• A class that implements an interface must state
so at start of definition with implements clause

• The class must implement every method

declared in the interface

• Multiple classes can implement the same

interface

• A class can implement more than one interface

Implementing an Interface

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Implementing an Interface

Fig. 3-3 The files for an interface, a class that implements

the interface, and the client.

Question 5 Write a Java interface that

specifies and declares methods for a

class of students.

Question 6 Begin the definition of a class

that implements the interface that you

wrote in answer to the previous

questions. Include data fields, a

constructor, and at least one method

definition.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

5. public interface StudentInterface

{

public void setStudent(Name studentName,

 String studentId);

public void setName(Name studentName);

public Name getName();

public void setId(String studentId);

public String getId();

public String toString();

} // end StudentInterface

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

6.

public class Student implements StudentInterface

{

private Name fullName;

private String id; // identification number

public Student()

{

 fullName = new Name();

 id = "";

} // end default constructor

public Student(Name studentName, String studentId)

{

 fullName = studentName;

 id =studentId;

} // end constructor

public void setStudent(Name studentName, String studentId)

{

 setName(studentName); // or fullName = studentName;

 setId(studentId); // or id = studentId;

} // end setStudent
Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

An Interface as a Data Type

• An interface can be used as a data type

or …

• Question 7 What revision(s) should you

make to both the interface you wrote

for Question 5 and the class Student that

implements it to make use of

NameInterface?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

7. In the interface and in the class,

replace Name with NameInterface in the

methods setStudent, setName, and

getName. Additionally in the class,

replace Name with NameInterface in the

declaration of the data field fullName and

in the parameterized constructor.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Generic Types Within an Interface

• Recall class OrderedPair

 Note the setPair method

• Consider an interface Pairable that

declares this method

A class that implements this interface could begin with the statement

Chapter02CodeSamples.htm

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

The Interface Comparable

• Method compareTo compares two

objects, say x and y
 Returns signed integer

 Returns negative if x < y

 Returns zero if x == y

 Returns positive if x > y

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

The Interface Comparable

• Consider a class Circle

 Methods equals, compareTo

 Methods from Measurable

• View source code

• Note

 Implements Measurable interface

 Shown with two alternative versions of
compareTo

Chapter03CodeSamples.htm

Question 8 Define a class Name that

implements the interface NameInterface,

as given in Listing D-2, and the interface

Comparable.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

8. /**

A class that represents a person's name.

@author Frank M. Carrano

*/

public class Name implements

 NameInterface, Comparable<Name>

{

 private String first; // first name

 private String last; // last name

public Name()

{

 first = "";

 last = "";

} // end default constructor

public Name(String firstName, String

 lastName)

{

 first = firstName;

 last = lastName;

} // end constructor

public void setName(String firstName,

 String lastName)

{

 setFirst(firstName);

 setLast(lastName);

} // end setName

public String getName()

{

 return toString();

} // end getName

public void setFirst(String firstName)

{

 first = firstName;

} // end setFirst

public String getFirst()

{

 return first;

} // end getFirst

public void setLast(String lastName)

{

 last = lastName;

} // end setLast

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

public String getLast()

{

 return last;

} // end getLast

public void giveLastNameTo(NameInterface

aName)

{

 aName.setLast(last);

} // end giveLastNameTo

public String toString()

{

 return first + " " + last;

} // end toString

public int compareTo(Name other)

{

 int result = last.compareTo(other.last);

 // if last names are equal, check first names

 if (result == 0)

 result = first.compareTo(other.first);

 return result;

} // end compareTo

} // end class Name

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Extending an Interface

• Use inheritance to derive an interface from

another

• When an interface extends another

 It has all the methods of the inherited

interface

 Also include some new methods

• Also possible to combine several

interfaces into a new interface

 Not possible with classes

Question 9 Imagine a class Pet that

contains the method setName, yet does

not implement the interface Nameable of

Segment D.24. Could you pass an

instance of Pet as the argument of the

method with the following header?

void enterShow(Nameable petName)

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

9. No. The class Pet must state that it

implements Nameable in an

implements clause.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Interfaces Versus Abstract Classes

• Purpose of interface similar to purpose of

abstract class

• But … an interface is not a base class

 It is not a class of any kind

• Use an abstract base class when

 You need a method or private data field that

classes will have in common

• Otherwise use an interface

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Named Constants Within an Interface

• An interface can contain named constants

 Public data fields initialized and declared as
final

• Consider an interface with a collection of

named constants

 Then derive variety of interfaces that can

make use of these constants

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Choosing Classes

• Look at a prospective system from a

functional point of view

• Ask

 What or who will use the system

 What can each actor do with the system

 Which scenarios involve common goals

• Use a case diagram

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Choosing Classes

Fig. 3-4 A use case diagram for a registration system

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Identifying Classes

• Describe the system

 Identify nouns and verbs

• Nouns suggest classes

 Students

 Transactions

 Customers

• Verbs suggest appropriate methods

 Print an object

 Post a transaction

 Bill the customer

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Identifying Classes

Fig. 3-5 A description of a use case for adding a course

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

CRC Cards

• Index cards – each card represents one

class

• Write a descriptive name for class at top

• List the class's responsibilities

 The methods

• Indicate interactions

 The collaborations

• These are CRC cards

"Class-Responsibility-Collaboration"

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

CRC Cards

Fig. 3-6 A class-responsibility-collaboration card

Question 10 Write a CRC card for the

class Student given in Appendix C.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

10

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Unified Modeling Language

• Used to illustrate a system's classes and

relationships

• Provides a class diagram

 Class name

 Attributes

 Operations

Fig. 3-7 A class representation that can

be part of a class diagram.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Unified Modeling Language

Fig. 3-8 UML notation for a base class
Student and two derived classes

• Question 11 How would the class

Name, given in Appendix B, appear in a

class diagram of the UML?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Unified Modeling Language

Fig. 3-9 A class

diagram showing

the base class
Student and two

derived classes

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Unified Modeling Language

Fig. 3-10 Part of a UML class diagram

with associations.

• Question 12 Combine previous 2 slides

into one class diagram. Then add a

class AllCourses that represents all

courses offered this semester. What new

association(s) do you need to add?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

12. Add a unidirectional association

(arrow) from AllCourses to Course with

a cardinality of 1 on its tail and * on its

head.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Reusing Classes

• Much software combines:

 Existing components

 New components

• When designing new classes

 Plan for reusability in the future

 Make objects as general as possible

 Avoid dependencies that restrict later use by

another programmer

