
This week

• Tools we will use in making our Data

Structure classes:

 Generic Types

 Inheritance

 Abstract Classes and Interfaces

• This is a lot of material but we'll be working

with these tools the whole semester

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Generic Types
(One last thing from

Appendix B)

Slides by Steve Armstrong

LeTourneau University

Longview, TX
2007,Prentice Hall

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Generic Types

• Consider a class with fields that can be of
any class type

• Use a generic type

 Follow class name with an identifier enclosed
in angle brackets
public class MyClass <T>

• View the OrderedPair class which takes
ordered pairs of any type

• Note sample code using this generic class

Chapter02CodeSamples.htm
Chapter02CodeSamples.htm
Chapter02CodeSamples.htm
Chapter02CodeSamples.htm
Chapter02CodeSamples.htm

More than one generic type

• In the previous example, the objects in a pair have

either the same data type or data types related by

inheritance.

• You can define more than one generic type within a

class definition by writing their identifiers, separated by

commas, within the angle brackets after the class’s

name, as in the class Pair shown in Listing B-6.

• View the Pair class

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Chapter02CodeSamples.htm
Chapter02CodeSamples.htm
Chapter02CodeSamples.htm
Chapter02CodeSamples.htm

Question 23 Can you use the class OrderedPair, as defined in

Listing B-5, to pair two objects having different and unrelated data

types? Why or why not?

Question 24 Can you use the class Pair, as defined in the previous

segment, to pair two objects having the same data type? Why or

why not?

Question 25 Using the class Name, as defined previously in this

appendix, write statements that pair two students as lab partners.

Question 26 Using the class Name, as defined previously in this

appendix, write statements that pair your name with the random

sequence number given in the int variable number.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

23. No. The class defines only one generic type.

24. Yes. You can write the same data type twice to correspond to

both S and T.

25. Name kristen = new Name("Kristen", "Doe");

 Name luci = new Name("Luci", "Lei");

 OrderedPair<Name> labPartners =

 new OrderedPair<Name>(kristen, luci);

26. Name kristen = new Name("Kristen", "Doe");

Integer seqN = number;

Pair<Name, Integer> aPair = new Pair<Name, Integer>(kristen,

seqN);

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Creating

Classes from

Other Classes

Appendix C

Slides by Steve Armstrong

LeTourneau University

Longview, TX
2007,Prentice Hall

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Chapter Contents

• Composition
 Generic Types

 Adapters

• Inheritance
 Invoking Constructors from Within Constructors

 Private Fields and Methods of The Base Class

 Protected Access

 Overriding, Overloading Methods

 Multiple Inheritance

• Type Compatibility and Base Classes
 The Class Object

 Abstract Classes and Methods

• Polymorphism

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Composition

• When a class has a data field that is an

instance of another class

• Example – an object of type Student.

Fig. 2-1 A Student object composed of other objects

fig 2-1

A "has a"

relationship

Click to View Source Code

Chapter02CodeSamples.htm

Question 1 What data fields would you use in the definition of a class

Address to represent a student’s address?

Question 2 Add a data field to the class Student to represent a

student’s address. What new methods should you define?

Question 3 What existing methods need to be changed in the class

Student as a result of the added field that Question 2 described?

Question 4 What is another implementation for the default constructor

that uses this, as described in Segment B.25 of Appendix B?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

1.

Some possibilities are roomNumber and dorm, or

street, city, state, zip.

2.

private Address residence;

Add the methods setAddress and getAddress.

3.

The constructors, setStudent, and toString.

4.

public Student()

{

 this(new Name(), "");

} // end default constructor

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Adapters

• Use composition to write a new class

 Has an instance of an existing class as a

data field

 Defines new methods needed for the new

class

• Example – a NickName class adapted

from class Name

• View source code of class NickName

Chapter02CodeSamples.htm

Question 5 Write statements that define bob

as an instance of NickName to represent

the nickname Bob. Then, using bob, write

a statement that displays Bob.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

5.

NickName bob = new NickName();

bob.setNickName("Bob");

System.out.println(bob.getNickName());

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Inheritance

• A general or base class is first defined

• Then a more specialized class is defined

by …

 Adding to details of the base class

 Revising details of the more general class

• Advantages

 Saves work

 Common properties and behaviors are define

only once for all classes involved

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Inheritance

Fig. 2-2 A hierarchy of classes.

An "is a"

relationship

Question 6 Some vehicles have wheels and

some do not. Revise Figure C-2 to

organize vehicles according to whether

they have wheels.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

6.

The Vehicle class has two subclasses,

WheeledVehicleand WheellessVehicle. The

subclasses of WheeledVehicle are

Automobile and Wagon. Boat is a subclass

of WheellessVehicle. The remaining

subclasses are the same as given in the

figure.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Inheritance

• View source code of class
CollegeStudent

Fig. 2-3 A hierarchy of student classes.

Chapter02CodeSamples.htm

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Invoking Constructors from Within

Constructors

• Constructors usually initialize data fields

• In a derived class

 The constructor must call the base class

constructor

• Note use of reserved word super as a

name for the constructor of the base class

 When super is used, it must be the first

action in the derived constructor definition

 Must not use the name of the constructor

Chapter02CodeSamples.htm

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Private Fields, Methods of Base Class

• Accessing inherited data fields

 Not accessible by name within definition of a method

from another class – including a derived class

 Still they are inherited by the derived class

• Derived classes must use public methods of the

base class

• Note that private methods in a base class are

also unavailable to derived classes

 But usually not a problem – private methods are used

only for utility duties within their class

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Protected Access
• A method or data field modified by
protected can be accessed by name

only within

 Its own class definition

 Any class derived from that base class

 Any class within the same package

• A Java package is a collection of classes

related to a certain activity, such as

graphics:
http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/package-summary.html

http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/package-summary.html

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Protected Access

• Note accessibility of elements of a class C

determined by the access modifiers

Fig. 2-4

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overriding Methods

• When a derived class defines a method with the

same signature as in base class

 Same name

 Same return type

 Same number, types of parameters

• Objects of the derived class that invoke the

method will use the definition from the derived

class

• It is possible to use super in the derived class

to call an overridden method of the base class

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overriding Methods

Fig. 2-5 The method toString in CollegeStudent

overrides the method toString in Student

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overloading a Method

• When the derived class method has

 The same name

 The same return type … but …

 Different number or type of parameters

• Then the derived class has available

 The derived class method … and

 The base class method with the same name

• Java distinguishes between the two

methods due to the different parameters

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Multiple use of super

• Consider a class derived from a base …

that itself is derived from a base class

 All three classes have a method with the

same signature

• The overriding method in the lowest

derived class cannot invoke the method in

the base class's base class

 The construct super.super is illegal

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overloading a Method

• A programmer may wish to specify that a

method definition cannot be overridden

 So that the behavior of the constructor will not

be changed

• This is accomplished by use of the
modifier final

Question 7 Question 5 asked you to create

an instance of NickName to represent the

nickname Bob. If that object is named bob,

do the following statements produce the

same output? Explain.

System.out.println(bob.getNickName());

System.out.println(bob);

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

7.

No. Since getNickName returns a string, the first

statement implicitly calls the method toString

defined in the class String. Thus, Bob is displayed.

Since the class NickName does not define its own

version of toString, the second statement invokes

Object’s toString. The output involves the memory

address of the object referenced by bob.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Question 8 Are the two definitions of the

constructors for the class Student

 (Segment C.2) an example of overloading

or overriding? Why?

Question 9 If you add the method

public void setStudent(Name studentName, String studentId)

to the class CollegeStudent and let it give some

default values to the fields year and degree, are

you overloading or overriding setStudent? Why?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Chapter02CodeSamples.htm

8.

Overloading.The constructors have the same

name but different signatures.

9.

Overriding. The revised version of setStudent

in CollegeStudent has the same signature

and return type as the version in the

superclass Student.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Multiple Inheritance

• Some languages allow programmer to
derive class C from classes A and B

• Java does not allow this

 A derived class can have only one base class

• Multiple inheritance can be approximated

 A derived class can have multiple interfaces

 Described in Chapter 3

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Object Types of a Derived Class

• Given :

 Class CollegeStudent,

 Derived from class Student

• Then a CollegeStudent object is also a

Student object

• In general …

An object of a derived class is also an

object of the base class

Question 10 If HighSchoolStudent is a

subclass of Student, can you assign an object of
HighSchoolStudent to a variable of type

Student? Why or why not?

Question 11 Can you assign an object of Student

to a variable of type HighSchoolStudent?

Why or why not?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

10.

Yes. You can assign an object of a class to a

variable of any ancestor type. An object of
type HighSchoolStudent can do anything

that an object of type Student can do.

11.

No. The Student object does not have all the

behaviors expected of a
HighSchoolStudent object.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

The Class Object

• Every class is a descendant of the class
Object

• Object is the class that is the beginning

of every chain of derived classes

 It is the ancestor of every other class

 Even those defined by the programmer

• http://docs.oracle.com/javase/1.4.2/docs/a

pi/java/lang/Object.html

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html

Speaking of class Object...

Ancestor of all classes

• defines methods clone(), equals(),

toString(), among others

• all classes automatically derive these

methods from Object

• to be useful, we have to override them so

they work with the details of the class in

which they are defined

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overriding the equals method
the parameter is class Object, we use a cast to be able to

refer to it as a Name or Student or BankAccount or

whater class we are defining it for.

we can refer to the private data members of that since it

is an object of the same class. Here is equals for Name:

public boolean equals (Object other){

 if (other instanceOf Name){

 Name that = (Name) other;

 return this.first.equals(that.first) &&

 this.last.equals(that.last)

}

else return false;

}
Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overriding the clone() method

• Makes an exact duplicate object with
same data. joe2 = joe.clone();

 We now have two identical objects

public Name clone(){

 return new Name(first, last);

}

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Question 12 If sue and susan are two

instances of the class Name, what if

statement can decide whether they

represent the same name?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

12.

if (sue.equals(susan))

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Abstract Classes and Methods

• Some base classes are not intended to have

objects of that type

 The objects will be of the derived classes

• Declare that base class to be abstract
public abstract class Whatever

{ . . . }

• The designer often specifies methods of the

abstract class without a body
 public abstract void doSomething();

 This requires all derived classes to implement this

method

• When one method name in an instruction can

cause different actions

 Happens according to the kinds of objects that invoke

the methods

• Example

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Polymorphism

The object still remembers it

is of type UndergradStudent

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Polymorphism

Figure 2-6 The method displayAt calls the correct version of display.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Polymorphism

• Which displayAt is called …

 Depends on the invoking object's place in the

inheritance chain and is not determined by the type of

the variable naming the object

Fig. 2-7 The variable s is another name for an

undergraduate object.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Dynamic Binding

• The process that enables different objects

to …

 Use different method actions

 For the same method name

• Objects know how they are supposed to

act

 When an overridden method is used …

 The action is for the method defined in the

class whose constructor created the object

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Dynamic Binding

Fig. 2-8 An object, not its name, determines its behavior.

Question 14 Is a method display with no

parameters that is defined explicitly in

each of the classes Student,

CollegeStudent, and UndergradStudent an

example of overloading or overriding?

Why?

Question 15 Is overloading a method name

an example of polymorphism?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

14.

Overriding. The methods have the same signatures and

return types.

15.

At one time, overloading was an example of polymorphism.

Today, polymorphism describes a situation in which an

object determines at execution time which action of a

method it will use for a method name that is overridden

either directly or indirectly.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

