
Java Review

Spring 2004 CS 111 2

Java

 Java Language Overview

 Representing Data in Java
 primitive variables

 reference variables

 Java Program Statements
 Conditional statements

 Repetition statements (loops)

 Writing Classes in Java
 Class definitions

 Arrays

Appendix A: Introduction to Java 3

Some Salient Characteristics of Java

• Java is platform independent: the same program can

run on any correctly implemented Java system

• Java is object-oriented:

• Structured in terms of classes, which group data with

operations on that data

• Can construct new classes by extending existing ones

• Java designed as

• A core language plus

• A rich collection of commonly available packages

• Java can be embedded in Web pages

Appendix A: Introduction to Java 4

Java Processing and Execution

• Begin with Java source code in text files: Model.java

• A Java source code compiler produces Java byte code

• Outputs one file per class: Model.class

• May be standalone or part of an IDE

• A Java Virtual Machine loads and executes class files

• May compile them to native code (e.g., x86) internally

Appendix A: Introduction to Java 5

Compiling and Executing a Java Program

Spring 2004 CS 111 6

Introduction to Objects

 An object represents something with which
we can interact in a program

 An object provides a collection of services
that we can tell it to perform for us

 The services are defined by methods in a
class that defines the object

 A class represents a concept, and an object
represents the embodiment of a class

 A class can be used to create multiple objects

Spring 2004 CS 111 7

Spring 2004 CS 111 8

Java Program Structure

 In the Java programming language:

 A program is made up of one or more classes

 A class contains one or more methods

 A method contains program statements

 Attributes/properties correspond to fields (or
variables)

 Behaviors/operations correspond to methods

 A Java application always contains a method
called main

Spring 2004 CS 111 9

Java Program Structure

public class MyProgram

{

}

public static void main (String[] args)

{

}

// comments about the class

// comments about the method

method header
method body

class body

class header

Spring 2004 CS 111 10

Java

 Java Language Overview

 Representing Data in Java
 primitive variables

 reference variables

 Java Program Statements
 Conditional statements

 Repetition statements (loops)

 Writing Classes in Java
 Class definitions

 Arrays

Representing Data in Java

 Variables

 primitive – hold numbers, letters

 reference – refer to objects (String, Tree)

Spring 2004 CS 111 11

Spring 2004 CS 111 12

Variables (Primitive or Reference)

 A variable is a name for a location in
memory

 A variable must be declared by
specifying the variable's name and the
type of information that it will hold

int total;

int count, temp, result;

Multiple variables can be created in one declaration

data type variable name

Spring 2004 CS 111 13

Primitive Data

 There are exactly eight primitive data types in
Java

 Four of them represent integers:
 byte, short, int, long

 Two of them represent floating point
numbers:
 float, double

 One of them represents characters:
 char

 And one of them represents boolean values:
 boolean

Spring 2004 CS 111 14

Numeric Primitive Data

 The difference between the various
numeric primitive types is their size,
and therefore the values they can store:

Type

byte

short

int

long

float

double

Storage

8 bits

16 bits

32 bits

64 bits

32 bits

64 bits

Min Value

-128

-32,768

-2,147,483,648

< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits

+/- 1.7 x 10308 with 15 significant digits

Max Value

127

32,767

2,147,483,647

> 9 x 1018

Spring 2004 CS 111 15

Arithmetic Expressions

 An expression is a combination of one
or more operands and their operators

 Arithmetic expressions use the
operators:

 If either or both operands associated
with an arithmetic operator are floating
point, the result is a floating point

Addition +
Subtraction -
Multiplication *
Division /
Remainder % (no ^ operator)

Spring 2004 CS 111 16

Division and Remainder

 If both operands to the division operator
(/) are integers, the result is an integer

(the fractional part is discarded)

 The remainder operator (%) returns the
remainder after dividing the second
operand into the first

14 / 3 equals?

8 / 12 equals?

4

0

14 % 3 equals?

8 % 12 equals?

2

8

Spring 2004 CS 111 17

String Concatenation

 The string concatenation operator (+) is used
to append one string to the end of another

 The plus operator (+) is also used for
arithmetic addition

 The function that the + operator performs
depends on the type of the information on
which it operates
 If at least one operand is a string, it performs

string concatenation
 If both operands are numeric, it adds them

 The + operator is evaluated left to right
 Parentheses can be used to force the

operation order



Explain why the value of the expression
 2 + 3 + "test" is "5test"
while the value of the expression
 "test" + 2 + 3 is "test23"

What is the value of "test" + 2 * 3 ?

Spring 2004 CS 111 18

Spring 2004 CS 111 19

Data Conversions

 In Java, data conversions can occur in three
ways:
 assignment conversion
 arithmetic promotion
 casting

 Assignment conversion occurs when a value
of one type is assigned to a variable of
another
 Only widening conversions can happen via

assignment

 Arithmetic promotion happens automatically
when operators in expressions convert their
operands

Spring 2004 CS 111 20

Data Conversions

 Casting is the most powerful, and dangerous,
technique for conversion

 Both widening and narrowing conversions can be
accomplished by explicitly casting a value

 To cast, the type is put in parentheses in front of
the value being converted

 For example, if total and count are

integers, but we want a floating point result
when dividing them, we can cast total:

result = (float) total / count;

 This is a technical joke
about the Java
programming
language.

 In Java, if a piece of
data isn't of the type
that some bit of
program would
normally accept, you
have to "cast" it to the
expected type. You do
this by writing the
name of the expected
type, in parens, in
front of the piece of
data.

Spring 2004 CS 111 21

Spring 2004 CS 111 22

Reference Variables

 A variable holds either a primitive type or a
reference to an object

 A class name can be used as a type to
declare an object reference variable

String title;

 No object is created with this declaration

 An object reference variable holds the
address of an object

 The object itself must be created separately

Appendix A: Introduction to Java 23

Referencing and Creating Objects

• When you declare reference variables

• They reference objects of specified types

• Two reference variables can reference the same object

• The new operator creates an instance of a class

• A constructor executes when a new object is created

• Example: String greeting = ″hello″;

Spring 2004 CS 111 24

Creating Objects

 Generally, we use the new operator to

create an object

 Creating an object is called instantiation

 An object is an instance of a particular
class

title = new String ("Java Software Solutions");

This calls the String constructor, which is

a special method that sets up the object

Spring 2004 CS 111 25

Java

 Java Language Overview

 Representing Data in Java
 primitive variables

 reference variables

 Java Program Statements
 Conditional statements

 Repetition statements (loops)

 Writing Classes in Java
 Class definitions

 Arrays

Spring 2004 CS 111 26

Java Control Statements:

 Branches
 if
 if-else
 switch

 Loops
 while
 do-while
 for

Spring 2004 CS 111 27

Java Control Statements:
Rules of Thumb

 Learn program patterns of general utility
(branching, loops, etc.) and use relevant
patterns for the problem at hand

 Seek inspiration by systematically working test
data by hand and ask yourself: “what am I
doing?”

 Declare variables for each piece of information
you maintain when working problem by hand

 Decompose problem into manageable tasks
 Remember the problem’s boundary conditions
 Validate your program by tracing it on test

data with known output

Spring 2004 CS 111 28

Branches/Conditional Statements

 A conditional statement lets us choose
which statement will be executed next

 Therefore they are sometimes called
selection statements

 Conditional statements give us the
power to make basic decisions

 Java's conditional statements are
 the if statement

 the if-else statement

 the switch statement

Spring 2004 CS 111 29

The if Statement

 The if statement has the following
syntax:

if (condition)

 statement1;

else

 statement2;

if is a Java

reserved word

The condition must be a boolean expression.

It must evaluate to either true or false.

If the condition is true, statement1 is executed.

If it is false, statement2 is executed.

Spring 2004 CS 111 30

Boolean Expressions

 A condition often uses one of Java's equality
operators or relational operators, which all
return boolean results:

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

 Note the difference between the equality
operator (==) and the assignment operator (=)

Spring 2004 CS 111 31

Logical Operators

 Boolean expressions can use the following
logical operators:
 ! Logical NOT
 && Logical AND
 || Logical OR

 They all take boolean operands and produce
boolean results

 Logical NOT is a unary operator (it operates
on one operand)

 Logical AND and logical OR are binary
operators (each operates on two operands)

Example if statement

Spring 2004 CS 111 32

Spring 2004 CS 111 33

The switch Statement

 The general syntax of a switch

statement is:
switch (expression)

{

 case value1 :

 statement-list1;

 break;

 case value2 :

 statement-list2;

 break;

 case value3 :

 statement-list3;

 break;

 case ...

}

switch

and
case

are

reserved

words

If expression

matches value2,

control jumps

to here

Example Switch statement

Spring 2004 CS 111 34

Spring 2004 CS 111 35

LOOPS: Repetition Statements

 Repetition statements allow us to execute a
statement multiple times

 Often they are referred to as loops

 Like conditional statements, they are
controlled by boolean expressions

 Java has three kinds of repetition statements:
 the while loop

 the do loop

 the for loop

 The programmer should choose the right kind
of loop for the situation

Spring 2004 CS 111 36

The while Statement

 The while statement has the following
syntax:

while (condition)

 statement;
while is a

reserved word

If the condition is true, the statement is executed.

Then the condition is evaluated again.

The statement is executed repeatedly until

the condition becomes false.

Spring 2004 CS 111 37

Example
//**
// Counter.java Author: Lewis/Loftus
//
// Demonstrates the use of a while loop.
//**

public class Counter
{
 //---
 // Prints integer values from 1 to a specific limit.
 //---
 public static void main (String[] args)
 {
 final int LIMIT = 5;
 int count = 1;

 while (count <= LIMIT)
 {
 System.out.println (count);
 count = count + 1;
 }

 System.out.println ("Done");
 }
}

Spring 2004 CS 111 38

The do Statement

 The do statement has the following
syntax:

do

{

 statement;

}

while (condition)

do and

while are

reserved

words

The statement is executed once initially,

and then the condition is evaluated

The statement is executed repeatedly

until the condition becomes false

Spring 2004 CS 111 39

The do Statement

 A do loop is similar to a while loop,

except that the condition is evaluated
after the body of the loop is executed

 Therefore the body of a do loop will

execute at least once

Spring 2004 CS 111 40

Example
//**
// Counter2.java Author: Lewis/Loftus
//
// Demonstrates the use of a do loop.
//**

public class Counter2
{
 //---
 // Prints integer values from 1 to a specific limit.
 //---
 public static void main (String[] args)
 {
 final int LIMIT = 5;
 int count = 0;

 do
 {
 count = count + 1;
 System.out.println (count);
 }
 while (count < LIMIT);

 System.out.println ("Done");
 }
}

Spring 2004 CS 111 41

Comparing while and do

statement

true

condition

evaluated

false

while loop

true

condition

evaluated

statement

false

do loop

Spring 2004 CS 111 42

The for Statement

 The for statement has the following
syntax:

for (initialization ; condition ; increment)

 statement;

Reserved

word

The initialization

is executed once

before the loop begins

The statement is

executed until the
condition becomes false

The increment portion is executed at the end of each iteration

The condition-statement-increment cycle is executed repeatedly

Spring 2004 CS 111 43

The for Statement

 A for loop is functionally equivalent to
the following while loop structure:

 initialization;

 while (condition)

 {

 statement;

 increment;

 }

Spring 2004 CS 111 44

Logic of a for loop

statement

true

condition

evaluated

false

increment

initialization

Spring 2004 CS 111 45

The for Statement

 Like a while loop, the condition of a
for statement is tested prior to

executing the loop body

 Therefore, the body of a for loop will

execute zero or more times

 It is well suited for executing a loop a
specific number of times that can be
determined in advance

Spring 2004 CS 111 46

Example
//**
// Counter3.java Author: Lewis/Loftus
//
// Demonstrates the use of a for loop.
//**

public class Counter3
{
 //---
 // Prints integer values from 1 to a specific limit.
 //---
 public static void main (String[] args)
 {
 final int LIMIT = 5;

 for (int count=1; count <= LIMIT; count++)
 System.out.println (count);

 System.out.println ("Done");
 }
}

Spring 2004 CS 111 47

Choosing a Loop Structure

 When you can’t determine how many times
you want to execute the loop body, use a
while statement or a do statement

 If it might be zero or more times, use a while

statement

 If it will be at least once, use a do statement

 If you can determine how many times you
want to execute the loop body, use a for

statement

Spring 2004 CS 111 48

Java

 Java Language Overview

 Representing Data in Java
 primitive variables

 reference variables

 Java Program Statements
 Conditional statements

 Repetition statements (loops)

 Writing Classes in Java
 Class definitions

 Arrays

Spring 2004 CS 111 49

Objects and Classes

 An object has:
 state - descriptive characteristics
 behaviors - what it can do (or what can be done

to it)

 A class is the model or pattern from which
objects are created

 For example, consider a coin that can be
flipped so that it's face shows either "heads"
or "tails"

 The state of the coin is its current face
(heads or tails)

 The behavior of the coin is that it can be
flipped

Appendix A: Introduction to Java 50

Defining Your Own Classes

• Unified Modeling Language (UML) is a standard diagram

notation for describing a class

Class

name

Field

values Class

name

Field

signatures:

type and name

Method signatures:

name, argument

types, result type

Appendix A: Introduction to Java 51

Defining Your Own Classes (continued)

• The modifier private limits access to just this class

• Only class members with public visibility can be

accessed outside of the class* (* but see protected)

• Constructors initialize the data fields of an instance

Appendix A: Introduction to Java 52

The Person Class

// we have omitted javadoc to save space

public class Person {

 private String givenName;

 private String familyName;

 private String IDNumber;

 private int birthYear;

 private static final int VOTE_AGE = 18;

 private static final int SENIOR_AGE = 65;

 ...

Appendix A: Introduction to Java 53

The Person Class (2)

// constructors: fill in new objects

public Person(String first, String family,

 String ID, int birth) {

 this.givenName = first;

 this.familyName = family;

 this.IDNumber = ID;

 this.birthYear = birth;

}

public Person (String ID) {

 this.IDNumber = ID;

}

Appendix A: Introduction to Java 54

The Person Class (3)

// modifier and accessor for givenName

public void setGivenName (String given) {

 this.givenName = given;

}

public String getGivenName () {

 return this.givenName;

}

Appendix A: Introduction to Java 55

The Person Class (4)

// more interesting methods ...

public int age (int inYear) {

 return inYear – birthYear;

}

public boolean canVote (int inYear) {

 int theAge = age(inYear);

 return theAge >= VOTE_AGE;

}

Appendix A: Introduction to Java 56

The Person Class (5)

// “printing” a Person

public String toString () {

 return “Given name: “ + givenName + “\n”

 + “Family name: “ + familyName + “\n”

 + “ID number: “ + IDNumber + “\n”

 + “Year of birth: “ + birthYear + “\n”;

}

Appendix A: Introduction to Java 57

The Person Class (6)

// same Person?

public boolean equals (Person per) {

 return (per == null) ? false :

 this.IDNumber.equals(per.IDNumber);

}

Spring 2004 CS 111 58

Java

 Java Language Overview

 Representing Data in Java
 primitive variables

 reference variables

 Java Program Statements
 Conditional statements

 Repetition statements (loops)

 Writing Classes in Java
 Class definitions

 Arrays

Appendix A: Introduction to Java 59

Arrays

• In Java, an array is also an object

• The elements are indexes and are referenced using the
form arrayvar[subscript]

Appendix A: Introduction to Java 60

Array Example

float grades[] = new float[numStudents];

... grades[student] = something; ...

float total = 0.0;

for (int i = 0; i < grades.length; i++) {

 total += grades[i];

}

System.out.println("Average =" +

 total / numStudents);

Appendix A: Introduction to Java 61

Array Example Variations

// visit cells in reverse order

for (int i = grades.length-1; i >= 0; i--)

{

 total += grades[i];

}

// uses Java 5.0 “for each” looping

for (float grade : grades) {

 total += grade;

}

