
A Binary Search Tree 

Implementation 

Chapter 25 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Contents 

• Getting Started 

 An Interface for the Binary Search Tree 

 Duplicate Entries 

 Beginning the Class Definition 

• Searching and Retrieving 

• Traversing 

• Adding an Entry 

 A Recursive Implementation 

 An Iterative Implementation 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Contents 

• Removing an Entry 

 Removing an Entry Whose Node Is a Leaf 

 Removing an Entry Whose Node Has One 

Child 

 Removing an Entry Whose Node Has Two 

Children 

 Removing an Entry in the Root 

 A Recursive Implementation 

 An Iterative Implementation 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Contents 

• The Efficiency of Operations 

 The Importance of Balance 

 The Order in Which Nodes Are Added 

• An Implementation of the ADT Dictionary 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Objectives 

• Decide whether a binary tree is a binary 

search tree 

• Locate a given entry in a binary search 

tree using fewest comparisons 

• Traverse entries in a binary search tree in 

sorted order 

• Add a new entry to a binary search tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Objectives 

• Remove entry from a binary search tree 

• Describe efficiency of operations on a 

binary search tree 

• Use a binary search tree to implement 

ADT dictionary 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Getting Started 

• Characteristics of a binary search tree 

 A binary tree 

 Nodes contain Comparable objects 

• For each node 

 Data in a node is greater than data in node’s 

left subtree 

 Data in a node is less than data in node’s 

right subtree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-1 A binary search tree of names 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Interface for the  

Binary Search Tree 

• Additional operations needed beyond 

basic tree operations 

• Database operations 

 Search 

 Retrieve 

 Remove 

 Traverse 

• Note interface, Listing 25-1 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Note: Code listing files 

must  be in same folder  

as  PowerPoint files 

for  links to work 

Chapter25-code_listings.htm
Chapter25-code_listings.htm
Chapter25-code_listings.htm


Understanding Specifications 

• Interface specifications allow use of binary 

search tree for an ADT dictionary 

• Methods use return values instead of 

exceptions 

 Indicates success or failure of operation 

 

 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-2 Adding an entry that matches an entry  

already in a binary search tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-2 Adding an entry that matches an entry  

already in a binary search tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Duplicate Entries 

• For simplicity we do not allow duplicate 

entries 

 Add method prevents this 

• Thus, modify definition 

 Data in node is greater than data in node’s left 

subtree 

 Data in node is less than or equal to data in 

node’s right subtree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-3 A binary search tree with duplicate entries 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Inorder traversal of the tree visits 

duplicate entry Jared immediately 

after visiting the original Jared. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 1  If you add a duplicate entry  Megan to the binary search tree 
in Figure 25-3 as a leaf, where should you place the new node? 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 1  If you add a duplicate entry  Megan to the binary search tree 
in Figure 25-3 as a leaf, where should you place the new node? 

As the left child of the node that contains  Whitney. 



Beginning the Class Definition 

• Source code of class 
BinarySearchTree, Listing 25-2 

 Note methods which disable setTree from 

BinaryTree 

• de 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Chapter25-code_listings.htm
Chapter25-code_listings.htm
Chapter25-code_listings.htm


Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 2  The second constructor in the class BinarySearchTree  calls the 
method setRootNode . Is it possible to replace this call with the call 
setRootData(rootEntry)? Explain. 
 
 
 
 
 
Question 3  Is it necessary to define the methods  isEmpty and clear within  the 
class BinarySearchTree ? Explain. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 2  The second constructor in the class BinarySearchTree  calls the 
method setRootNode . Is it possible to replace this call with the call 
setRootData(rootEntry)? Explain. 
 
 
 
 
 
Question 3  Is it necessary to define the methods  isEmpty and clear within  the 
class BinarySearchTree ? Explain. 

No. The constructor first calls the default constructor of BinaryTree, which 
sets  root to  null. The method setRootData  contains the call 
root.setData(rootData), which would cause an exception. 

No;  BinarySearchTree  inherits these methods from  BinaryTree. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 4  When getEntry  calls  findEntry, it passes  getRootNode()  as the first 
argument. This argument’s data type is BinaryNodeInterface<T>, which 
corresponds to the type of the parameter  rootNode . If you change  rootNode ’s 
type to  BinaryNode<T> , what other changes, if any, must you make? 

Question 5 Under what circumstance will a client of BinarySearchTree  be able 
to call the other methods in  TreeIteratorInterface ? Under what circumstance 
will such a client be unable to call these methods? 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 4  When getEntry  calls  findEntry, it passes  getRootNode()  as the first 
argument. This argument’s data type is BinaryNodeInterface<T>, which 
corresponds to the type of the parameter  rootNode . If you change  rootNode ’s 
type to  BinaryNode<T> , what other changes, if any, must you make? 

Question 5 Under what circumstance will a client of BinarySearchTree  be able 
to call the other methods in  TreeIteratorInterface ? Under what circumstance 
will such a client be unable to call these methods? 

The situation is like that described for setTree in Segment 25.6. BinarySearchTree  
inherits the methods declared in TreeIteratorInterface  from  BinaryTree. An object 
whose static type is  BinarySearchTree  can invoke these methods, but an object 
whose static type is  SearchTreeInterface cannot. 

In getEntry ’s call to  findEntry, you would cast  getRootNode()  to  BinaryNode<T> , as 
follows: 
 findEntry((BinaryNode<T>)getRootNode(), entry) 
Within findEntry, the first recursive call to  findEntry must be 
 findEntry((BinaryNode<T>)rootNode.getLeftChild(), entry) 
since the return type of  getLeftChild is BinaryNodeInterface<T>. Analogous comments  
apply to the second recursive call and getRightChild. 



FIGURE 25-4 (a) A binary search tree;  

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



FIGURE 25-4 (b) the same tree after adding Chad 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Note recursive implementation 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 6 Add the names Chris, Jason, and Kelley to the binary search tree in Figure 25-4b. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 6 Add the names Chris, Jason, and Kelley to the binary search tree in Figure 25-4b. 

Chris is the right child of Chad.  Jason is the left child of  Jim .  Kelley is the 
right child of Jim. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 7  Add the name Miguel  to the binary search tree in Figure 25-4a, and then add 
Nancy. Now go back to the original tree and add  Nancy and then add  Miguel . Does 
the order in which you add the two names  affect the tree that results? 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 7  Add the name Miguel  to the binary search tree in Figure 25-4a, and then add 
Nancy. Now go back to the original tree and add  Nancy and then add  Miguel . Does 
the order in which you add the two names  affect the tree that results? 

When you add Miguel first, Miguel  is the left child of  Whitney, and Nancy is the 
right child of Miguel.  When you add Nancy first,  Nancy is the left child of  
Whitney, and Miguel  is the left child of  Nancy. Thus, the order of the additions 
does affect the tree that results. 



Figure 25-5 Recursively adding Chad to  

smaller subtrees of a binary search tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-5 Recursively adding Chad to  

smaller subtrees of a binary search tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-5 Recursively adding Chad to  

smaller subtrees of a binary search tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-5 Recursively adding Chad to  

smaller subtrees of a binary search tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-6 (a) Two possible configurations of a leaf node N; 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-6 (b) the resulting two possible configurations  

after removing node N 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-7 (a) Four possible configurations of a  

node N that has one child; 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-7 (b) the resulting two possible  

configurations after removing node N 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-8 Two possible configurations  

of a node N that has two children 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-9 Node N and its subtrees: (a) the entry a is 

immediately before the entry e, and b is immediately after e;  

(b) after deleting the node that contained a and replacing e with  a 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-10 The largest entry a in node N’s left subtree occurs 

in the subtree’s rightmost node R 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-11 (a) A binary search tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-11 (b) after removing Chad 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-11 (c) after removing Sean 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-11 (d) after removing Kathy 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 8  The second algorithm described in Segment 25.25 involves the inorder  
successor. Using this algorithm, remove Sean  and Chad from the tree in Figure 25-11a. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 8  The second algorithm described in Segment 25.25 involves the inorder  
successor. Using this algorithm, remove Sean  and Chad from the tree in Figure 25-11a. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 9  Remove  Megan from the tree in Figure 25-11a in two different ways. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 9  Remove  Megan from the tree in Figure 25-11a in two different ways. 



Figure 25-12 (a) two possible configurations of a root that has 

one child; (b) after removing the root 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Efficiency of Operations 

• Operations add, remove, and getEntry 

require search that begins at root 

• Worst case:  

 Searches begin at root and examine each 

node on path that ends at leaf 

 Number of comparisons each operation 

requires, directly proportional to height h of 

tree 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Efficiency of Operations 

• Tallest tree has height n if it contains n 

nodes 

• Operations add, remove, and getEntry 

are O(h) 

• Note different binary search trees can 

contain same data 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-13 Two binary search trees that contain the same data 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Efficiency of Operations 

• Tallest tree has height n if it contains n 

nodes 

 Search is an O(n) operation 

• Shortest tree is full 

 Searching full binary search tree is O(log n) 

operation 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 11 Using Big Oh notation, what is the time complexity of the method  contains? 
 
 
 
 
 
 
 
Q 12 Using Big Oh notation, what is the time complexity of the method isEmpty? 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Q 11 Using Big Oh notation, what is the time complexity of the method  contains? 
 
 
 
 
 
 
 
Q 12 Using Big Oh notation, what is the time complexity of the method isEmpty? 

Since the method contains  invokes  getEntry , the efficiency of these 
methods is the same. So if the tree’s height is as small as possible, the 
efficiency is O(log  n). If the tree’s height is as large as possible, the 
efficiency is O(n ). 

O(1). 



Importance of Balance 

• Full binary search tree not necessary  to 

get O(log n) performance 

 Complete tree will also give O(log n) 

performance 

• Completely balanced tree 

 Subtrees of each node have exactly same 

height 

• Height balanced tree 

 Subtrees of each node in tree differ in height 

by no more than 1 
Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 25-14 Some binary trees that are height balanced 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Order in Which Nodes Added 

• Adding nodes in sorted order results in tall 

tree, low efficiency operations 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Order in Which Nodes Added 

• Add data to binary search tree in random 

order 

 Expect tree whose operations are O(log n). 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Implementation of the ADT 

Dictionary 

• Recall interface for a dictionary from 

Chapter 19, section 4 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Implementation of the ADT 

Dictionary 

•  Consider a dictionary implementation that 

uses balanced search tree to store its 

entries 

 A class of data objects that will contain both 

search key and associated value 

• Note listing of such a class, Listing 25-3 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Chapter25-code_listings.htm
Chapter25-code_listings.htm
Chapter25-code_listings.htm


End 

Chapter 25 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 


