
Trees

Chapter 23

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Tree Concepts

 Hierarchical Organizations

 Tree Terminology

• Traversals of a Tree

 Traversals of a Binary Tree

 Traversals of a General Tree

• Java Interfaces for Trees

 Interfaces for All Trees

 An Interface for Binary Trees

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Examples of Binary Trees

 Expression Trees

 Decision Trees

 Binary Search Trees

 Heaps

• Examples of General Trees

 Parse Trees

 Game Trees

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe binary trees, general trees, using

standard terminology

• Traverse tree in one of four ways:

preorder, postorder, inorder, level order

• Give examples of binary trees: expression

trees, decision trees, binary search trees,

and heaps

• Give examples of general trees: including

parse trees, game trees

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Trees vs Hashtables

• http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables

• Hash tables in general have better cache behavior requiring less memory reads compared to a

binary tree. For a hash table you normally only incur a single read before you have access to a

reference holding your data (O(1)). The binary tree, if it is a balanced variant, requires something

in the order of O(k * log(n)) memory reads for some constant k.

• On the other hand, if an enemy knows your hash-function the enemy can force your hash table to

make collisions, greatly hampering its performance. The workaround is to choose the hash-

function randomly from a family, but a BST does not have this disadvantage. Also, when the hash

table pressure grows too much, you often tend to enlargen and reallocate the hash table which

may be an expensive operation. The BST has simpler behavior here and does not tend to

suddenly allocate a lot of data and do a rehashing operation.

• Trees tend to be the ultimate average data structure. They can act as lists, can easily be split for

parallel operation, have fast removal, insertion and lookup on the order of O(lg n). They do

nothing particularly well, but they don't have any excessively bad behavior either.

• Finally, BSTs are much easier to implement in (pure) functional languages compared to hash-

tables and they do not require destructive updates to be implemented (the persistence argument

by Pascal above).

Copyright ©2012 by Pearson Education, Inc. All rights reserved

http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables
http://stackoverflow.com/questions/4128546/advantages-of-binary-search-trees-over-hash-tables

Tree Concepts

• A way to organize data

 Consider a family tree

• Hierarchical organization

 Data items have ancestors, descendants

 Data items appear at various levels

• Contrast with previous linearly organized

structures

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-1 Carole’s children and grandchildren

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-2 Jared’s parents and grandparents

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-3 A portion of a university’s administrative structure

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-4 Computer files organized into folders

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-5 A tree equivalent to the tree in Figure 23-4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Tree Concepts

• Root of an ADT tree is at tree’s top

 Only node with no parent

 All other nodes have one parent each

• Each node can have children

 A node with children is a parent

 A node without children is a leaf

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Tree Concepts

• General tree

 Node can any number of children

• N-ary tree

 Node has max n children

 Binary tree node has max 2 children

• Node and its descendants form a subtree

• Subtree of a node

 Tree rooted at a child of that node

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Tree Concepts

• Subtree of a tree

 Subtree of the tree’s root

• Height of a tree

 Number of levels in the tree

• Path between a tree’s root and any other

node is unique.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-6 Three binary trees

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-7 The number of nodes in a full binary tree as a

function of the tree’s height

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-7 The number of nodes in a full binary tree as a

function of the tree’s height

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-7 The number of nodes in a full binary tree as a

function of the tree’s height

Copyright ©2012 by Pearson Education, Inc. All rights reserved

The height of a binary tree with n nodes
that is either complete or full is

log2 (n + 1) rounded up.

Traversals of a Tree

• Must visit/process each data item exactly

once

• Nodes can be visited in different orders

• For a binary tree

 Visit the root

 Visit all nodes in root’s left subtree

 Visit all nodes in root’s right subtree

• Could visit root before, between, or after

subtrees

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-8 The visitation order of a preorder traversal

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Visit root before visiting root’s subtrees

Figure 23-9 The visitation order of an inorder traversal

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Visit root between visiting root’s subtrees

Figure 23-10 The visitation order of a postorder traversal

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Visit root after visiting root’s subtrees

Traversals of a Tree

• Level-order traversal

 Example of breadth-first traversal

• Pre-order traversal

 Example of depth-first traversal

• For a general tree (not a binary)

 In-order traversal not well defined

 Can do level-order, pre-order, post-order

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-11 The visitation order of a level-order traversal

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Begins at root, visits nodes one level at a time

FIGURE 23-12 The visitation order of two traversals of a general

tree: (a) preorder;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 23-12 The visitation order of two traversals of a general

tree: (a) postorder;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Interfaces for Trees

• Interfaces for all trees

 Interface which includes fundamental

operations, Listing 23-1

 Interface for traversals, Listing 23-2

 Interface for binary trees, Listing 23-3

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm

Figure 23-13 A binary tree whose nodes contain one-letter strings

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Expression Trees

• Use binary tree to represent expressions

 Two operands

 One binary operator

 The operator is the root

• Can be used to evaluate an expression

 Post order traversal

 Each operand, then the operator

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 23-14 Expression trees for four algebraic expressions

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 23-14 Expression trees for four algebraic expressions

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 23-14 Expression trees for four algebraic expressions

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Decision Trees

• Used for expert systems

 Helps users solve problems

 Parent node asks question

 Child nodes provide conclusion or further

question

• Decision trees are generally n-ary

 Expert system application often binary

• Note interface for decision tree, Listing 23-4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm

Figure 23-15 A portion of a binary decision tree

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Decision Trees

• Consider a guessing game

 Program asks yes/no questions

 Adds to its own decision tree as game

progresses

• Example

• View class
GuessingGame, Listing 23-5

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm

Figure 23-16 An initial decision tree for a guessing game

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-17 The decision tree for a guessing game after

acquiring another fact

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Binary Search Trees

• Nodes contain Comparable objects

• For each node in a search tree:

 Node’s data greater than all data in node’s left

subtree

 Node’s data less than all data in node’s right

subtree

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-18 A binary search tree of names

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-19 Two binary search trees containing the

same data as the tree in Figure 23-18

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Heaps

• Complete binary tree: nodes contain
Comparable objects

• Organization

 Each node contains object no smaller (or no

larger) than objects in descendants

 Maxheap, object in node greater than or equal

to descendant objects

 Minheap, object in node less than or equal to

descendant objects

• Interface, Listing 23-6

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm

FIGURE 23-20 (a) A maxheap and

(b) a minheap that contain the same values

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Priority Queues

• Use a heap to implement the ADT priority

queue

• Assume class MaxHeap implements

MaxHeapInterface

• View class PriorityQueue, Listing 23-7

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter23-code_listings.htm
Chapter23-code_listings.htm
Chapter23-code_listings.htm

Examples of General Trees

• Parse trees

 Use grammar rules for algebraic expression

 Apply to elements of a string

 Expression is root

 Variables, operators are the leaves

• Must be general

 To accommodate any expression

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-21 A parse tree for the
algebraic expression a * (b + c)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Game Trees

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 23-22 A portion of a game tree for tic-tac-toe

End

Chapter 23

Copyright ©2012 by Pearson Education, Inc. All rights reserved

