Hashing as a Dictionary
Implementation

Chapter 22

NNNNNNNNNNNN

Data Structures
and Abstractions

with
Java FRANK M. CARRANO

= Sy e

Copyright ©2012 by Pearson Education, Inc. All rights reserved



e Lo T

Contents

* The Efficiency of Hashing
= The Load Factor

= The Cost of Open Addressing

= The Cost of Separate Chaining
~» * Rehashing

2+ Comparing Schemes for Collision
Resolution

/Py




Wi

ATl e T

Contents

* A Dictionary Implementation That Uses
Hashing

Entries in the Hash Table

Data Fields and Constructors
The Methods getvValue, remove, and add

lterators
» Java Class Library: The Class HashMap

» Jave Class Library: The Class HashSet




/Py

ATl e T

Objectives

Describe relative efficiencies of various
collision resolution techniques

Describe hash table’s load factor
Describe rehashing and why necessary
Use hashing to implement ADT dictionary




Wi

Efficiency of Hashing

 Observations

» Successful retrieval or removal has same
efficiency as successful search

» Unsuccessful retrieval or removal has same
efficiency as unsuccessful search

= A successful addition has same efficiency as
unsuccessful search

= An unsuccessful addition has same efficiency
as successful search




/Py

. il

ATl e T

Efficiency of Hashing

° Load faCtOI’ A — Number of entries in the dicionary

~ Number of locations in the hash table

* Minimum load factor =0
= When dictionary Is empty
= |t IS never negative

 Maximum load factor

= Depends on type of collision resolution used
= Cannot exceed 1




AT e T

Open Addressing

* Average number of collisions for linear
= probing

= Unsuccessful search %{1 + : }

A

» Successful search %{1 - }



A

0.1
0.3
0.5
0.7
0.9

Figure 22-1 The average number of comparisons required by a
search of the hash table for given values of the load factor A

Unsuccessful Search

1.1
1.5
2.5
6.1
50.5

when using linear probing

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Successful Search

1.1
1.2
1.5
2.2
5.5



_ zm - 1/_‘.3—‘-__ -

Open Addressing

» Average number of collisions for quadratic
probing or double hashing

1
» Unsuccessful search T

1 1
» Successful search ;108 (ﬁ)



0.1
0.3
0.5
0.7
0.9

Figure 22-2 The average number of comparisons required by a
search of the hash table for given values of the load factor A
when using either quadratic probing or double hashing

Unsuccessful Search

1.1
1.4
2.0
3.3
10.0

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Successful Search

1.1
1.2
1.4
1.7
2.6



Al e T

Separate Chaining

° Load faCtor |S 3 = Number of entries in the dicionary

Number of chains

& * Average number of comparisons

<7 » Unsuccessful search A

= Successful search 1 +%




A

Unsuccessful Search

Q™

Successful Search

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.0

Figure 22-3 The average number of comparisons required by a
search of the hash table for given values of the load factor A

0.1
0.3
0.5
0.7
0.9
1.1
13
1.5
1.7
19
20

1.1
1.2
1.3
14
1.5
1.6
1.7
18
19
2.0
2.0

when using separate chaining

Copyright ©2012 by Pearson Education, Inc. All rights reserved




ATl e T

Rehashing

* When load factor gets too high

= Resize array to a prime number at least twice
former size

= Must rehash to different locations ¢ % n,
based on new size, n, of array

Wi

~= * Note — this is more work than simply
~ Increasing the size of an array
= Not a task to be done often




(a) Successful search (b) Unsuccessful search
18 18
. % 16 w 16
f b
s
Comparin s u £
. a
e 12 o 12
Schemes g 1 BN
= 4 &
9 6 ': :; 6 I
r‘ %‘U : eﬂ ¥ J,
5 4 ’ .':j 4 ) ’
< 2 S < 2 g
P 0 0 l——r—T T
" 0 02 04 06 08 1.0 0 02 04 06 08 1.0
G : "
Q" ------- Linear probing
= i = = = = Quadratic probing, double hashing
n ‘ Separate chaining
-

Figure 22-4 The average number of comparisons required by a
search of the hash table versus the load factor A for four collision
resolution techniques when the search is
(a) successful; (b) unsuccessful

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Al e T ;".

Dictionary Implementation
That Uses Hashing

* We implement linear probing

= Other open addressing strategies involve few
changes

~~ * Note source code of class
‘ HashedDirectory, Listing 22-1

/Py

Note: Code listing files
must be in same folder
as PowerPoint files
for links to work



Chapter22-code_listings.htm
Chapter22-code_listings.htm
Chapter22-code_listings.htm

o

- ’r“.
2 V4

LA

Dictionary Implementation
That Uses Hashing

Hash table

SIEECIENEL

(f Q Flag) Instance of TableEntry

o OO
Search key Value

Figure 22-5 A hash table and one of its entry objects

Copyright ©2012 by Pearson Education, Inc. All rights reserved




s

"
——i

—
.

¥
5

R a ., - N

Blue = current entry

Light gray = removed entry
Dark gray = null

FIGURE 22-6 A hash table containing dictionary entries,
removed entries, and null values

Copyright ©2012 by Pearson Education, Inc. All rights reserved




Wi

Java Class Lib‘réry:
The Class HashMap

» Standard package java.util contains the
class HashMap<K, V>

 Table is a collection of buckets

» Constructors
= public HashMap ()
* public HashMap (int initialSize)
» public HashMap (int initialSize,
float maxlLoadFactor)

= public HashMap (Map<? extends K, ?
extends V> table)




AT mE .
-

Java Class Lib-réry:
The Class HashMap

* Design
- = Max A =0.75

g : : : :

— 1 = Avoid necessity of rehashing by setting

4 Max entries in dictionary
" Number of buckets >

A’?71(1.76'




Java Class Lib'réry:
The Class HashSet

* Implements the interface
jJava.util. Set of Chapter 1

= = Uses an instance of the class HashMap to
contain entries in a set
~» + Constructors
% = public HashSet ()
* public HashSet(int initialCapacity)

= public HashSet (int initialCapacity,
float loadFactor)



End

Chapter 22

THIRD EDITION

Data Structures
and Abstractions

with =
Java FRANK M. CARRANO
L

Copyright ©2012 by Pearson Education, Inc. All rights reserved



