
Hashing as a Dictionary

Implementation

Chapter 22

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• The Efficiency of Hashing

 The Load Factor

 The Cost of Open Addressing

 The Cost of Separate Chaining

• Rehashing

• Comparing Schemes for Collision

Resolution

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• A Dictionary Implementation That Uses

Hashing

 Entries in the Hash Table

 Data Fields and Constructors

 The Methods getValue, remove, and add

 Iterators

• Java Class Library: The Class HashMap

• Jave Class Library: The Class HashSet

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe relative efficiencies of various

collision resolution techniques

• Describe hash table’s load factor

• Describe rehashing and why necessary

• Use hashing to implement ADT dictionary

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency of Hashing

• Observations

 Successful retrieval or removal has same

efficiency as successful search

 Unsuccessful retrieval or removal has same

efficiency as unsuccessful search

 A successful addition has same efficiency as

unsuccessful search

 An unsuccessful addition has same efficiency

as successful search

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency of Hashing

• Load factor

• Minimum load factor = 0

 When dictionary is empty

 It is never negative

• Maximum load factor

 Depends on type of collision resolution used

 Cannot exceed 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Open Addressing

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 22-1 The average number of comparisons required by a

search of the hash table for given values of the load factor λ

when using linear probing

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Open Addressing

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 22-2 The average number of comparisons required by a

search of the hash table for given values of the load factor λ

when using either quadratic probing or double hashing
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Separate Chaining

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 22-3 The average number of comparisons required by a

search of the hash table for given values of the load factor λ

when using separate chaining
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Rehashing

• When load factor gets too high

 Resize array to a prime number at least twice

former size

 Must rehash to different locations c % n,

based on new size, n, of array

• Note – this is more work than simply

increasing the size of an array

 Not a task to be done often

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Comparing

Schemes

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 22-4 The average number of comparisons required by a

search of the hash table versus the load factor λ for four collision

resolution techniques when the search is

(a) successful; (b) unsuccessful

Dictionary Implementation

That Uses Hashing

• We implement linear probing

 Other open addressing strategies involve few

changes

• Note source code of class
HashedDirectory, Listing 22-1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Chapter22-code_listings.htm
Chapter22-code_listings.htm
Chapter22-code_listings.htm

Dictionary Implementation

That Uses Hashing

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 22-5 A hash table and one of its entry objects

FIGURE 22-6 A hash table containing dictionary entries,
removed entries, and null values

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library:
The Class HashMap

• Standard package java.util contains the

class HashMap<K, V>

• Table is a collection of buckets

• Constructors
 public HashMap()

 public HashMap(int initialSize)

 public HashMap(int initialSize,

float maxLoadFactor)

 public HashMap(Map<? extends K,?

extends V> table)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library:
The Class HashMap

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library:
The Class HashSet

• Implements the interface

java.util.Set of Chapter 1

 Uses an instance of the class HashMap to

contain entries in a set

• Constructors
 public HashSet()

 public HashSet(int initialCapacity)

 public HashSet(int initialCapacity,

float loadFactor)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 22

Copyright ©2012 by Pearson Education, Inc. All rights reserved

