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Objectives

Describe relative efficiencies of various
collision resolution techniques

Describe hash table’s load factor
Describe rehashing and why necessary
Use hashing to implement ADT dictionary
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Efficiency of Hashing

 Observations

» Successful retrieval or removal has same
efficiency as successful search

» Unsuccessful retrieval or removal has same
efficiency as unsuccessful search

= A successful addition has same efficiency as
unsuccessful search

= An unsuccessful addition has same efficiency
as successful search
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Efficiency of Hashing

° Load faCtOI’ A — Number of entries in the dicionary

~ Number of locations in the hash table

* Minimum load factor =0
= When dictionary Is empty
= |t IS never negative

 Maximum load factor

= Depends on type of collision resolution used
= Cannot exceed 1
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Open Addressing

* Average number of collisions for linear
= probing

= Unsuccessful search %{1 + : }

A

» Successful search %{1 - }
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Figure 22-1 The average number of comparisons required by a
search of the hash table for given values of the load factor A
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Open Addressing

» Average number of collisions for quadratic
probing or double hashing

1
» Unsuccessful search T

1 1
» Successful search ;108 (ﬁ)
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Figure 22-2 The average number of comparisons required by a
search of the hash table for given values of the load factor A
when using either quadratic probing or double hashing
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Separate Chaining

° Load faCtor |S 3 = Number of entries in the dicionary

Number of chains

& * Average number of comparisons

<7 » Unsuccessful search A

= Successful search 1 +%
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Figure 22-3 The average number of comparisons required by a
search of the hash table for given values of the load factor A
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Rehashing

* When load factor gets too high

= Resize array to a prime number at least twice
former size

= Must rehash to different locations ¢ % n,
based on new size, n, of array

Wi

~= * Note — this is more work than simply
~ Increasing the size of an array
= Not a task to be done often
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Figure 22-4 The average number of comparisons required by a
search of the hash table versus the load factor A for four collision
resolution techniques when the search is
(a) successful; (b) unsuccessful
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Dictionary Implementation
That Uses Hashing

* We implement linear probing

= Other open addressing strategies involve few
changes

~~ * Note source code of class
‘ HashedDirectory, Listing 22-1
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Note: Code listing files
must be in same folder
as PowerPoint files
for links to work
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Dictionary Implementation
That Uses Hashing

Hash table
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Figure 22-5 A hash table and one of its entry objects
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Blue = current entry

Light gray = removed entry
Dark gray = null

FIGURE 22-6 A hash table containing dictionary entries,
removed entries, and null values
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Java Class Lib‘réry:
The Class HashMap

» Standard package java.util contains the
class HashMap<K, V>

 Table is a collection of buckets

» Constructors
= public HashMap ()
* public HashMap (int initialSize)
» public HashMap (int initialSize,
float maxlLoadFactor)

= public HashMap (Map<? extends K, ?
extends V> table)
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Java Class Lib-réry:
The Class HashMap

* Design
- = Max A =0.75

g : : : :

— 1 = Avoid necessity of rehashing by setting

4 Max entries in dictionary
" Number of buckets >

A’?71(1.76'




Java Class Lib'réry:
The Class HashSet

* Implements the interface
jJava.util. Set of Chapter 1

= = Uses an instance of the class HashMap to
contain entries in a set
~» + Constructors
% = public HashSet ()
* public HashSet(int initialCapacity)

= public HashSet (int initialCapacity,
float loadFactor)
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