
Introducing Hashing

Chapter 21

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• What Is Hashing?

• Hash Functions

 Computing Hash Codes

 Compressing a Hash Code into an Index for

the Hash Table

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A demo of hashing (after)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ARRAY

insert hash index = hash % size linear quadratic index value

Chris 289 0 0 Jack <==Chris

Drew 312 6 1 Chris

Darren 1039 2 2 Darren <--Briana

Briana 512 2 3 Briana

Sally 345 5 7 14 = 5 + 9 4 Joe

5 Jack <- Sally

6 Drew

7

8 Steve

9 Rock

10 Blue

add total 11

1 12 John

3 4 13 Dave

5 9 14 Sally

7 16 15 Rex

9 25 16 Rianne

11 36

Contents

• Resolving Collisions

 Open Addressing with Linear Probing

 Open Addressing with Quadratic Probing

 Open Addressing with Double Hashing

 A Potential Problem with Open Addressing

 Separate Chaining

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe basic idea of hashing

• Describe purpose of hash table, hash

function, perfect hash function

• Explain why to override method
hashCode for objects used as search

keys

• Describe how hash function compresses

hash code into index to the hash table

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe algorithms for dictionary
operations getValue, add, and remove

when open addressing resolves collisions

• Describe separate chaining as method to

resolve collisions

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe algorithms for dictionary
operations getValue, add, and remove

when separate chaining resolves collisions

• Describe clustering and problems it

causes

Copyright ©2012 by Pearson Education, Inc. All rights reserved

What Is Hashing?

• Method to locate data quickly

 Ideally has O(1) search times

 Yet cannot do easy traversal of data items

• Technique that determines index using

only a search key

• Hash function locates correct item in hash

table

 Maps or “hashes to” entry

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-1 A hash function indexes its hash table

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Typical Hashing

• Algorithm will

 Convert search key to integer called hash

code.

 Compress hash code into range of indices for

hash table.

• Typical hash functions not perfect

 Can allow more than one search key to map

into single index

 Causes “collision” in hash table

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-2 A collision caused by the hash function h

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Computing Hash Codes

• Must override Java Object method

hashCode

• Guidelines for new hashCode method

 If class overrides method equals, it should

override hashCode.

 If method equals considers two objects

equal, hashCode must return same value for

both objects.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Computing Hash Codes

• Guidelines continued …

 If you call an object’s hashCode more than

once during execution of a program, and if

object’s data remains same during this time,
hashCode must return the same value.

 Object’s hash code during one execution of a

program can differ from its hash code during

another execution of the same program.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Hash Code for a String

• Assign integer to each character in string

 Use 1 – 26 for ‘a’ to ‘z’

 Use Unicode integer

• Possible to sum the integers of the

characters for the hash code

• Better solution

 Multiply Unicode value of each character by

factor based on character’s position

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Calculate the hash code for the string Java when g is 31.
Compare your result with the value of the expression “Java" .hashCode() .

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Calculate the hash code for the string Java when g is 31.
Compare your result with the value of the expression “Java" .hashCode() .

2301506. "Java".hashCode() has the same value.

Hash Code for a Primitive Type

• For int

 Use the value

• For byte, short, or char

 Cast into an int

• Other primitive types

 Manipulate internal binary representations

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Compressing a Hash Code

• Scale an integer by using Java % operator

 For code c and size of table n, use c % n

 Result is remainder of division

• If n is prime, provides values distributed in

range 0 to n – 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 2 The previous question asked you to compute the hash code for the
string Java. Use that value to calculate what getHashIndex(" Java") returns
when the length of the hash table is 101.

Question 3 What one-character string, when passed to getHashIndex, will
cause the method to return the same value as in the previous question?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 2 The previous question asked you to compute the hash code for the
string Java. (2301506) Use that value to calculate what getHashIndex(" Java")
returns when the length of the hash table is 101.

Question 3 What one-character string, when passed to getHashIndex, will
cause the method to return the same value as in the previous question?

19

“x”

Resolving Collisions

• Open addressing scheme locates

alternate open location in hash table

• Linear probing

 Collision at a[k]

 Check for open slot at a[k + 1], a[k+2], etc.

• For retrievals

 Must check for agreement of search key in

successive elements of array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-3 The effect of linear probing after adding four entries

whose search keys hash to the same index

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-4 A revision of the hash table shown in Figure 21-3

when linear probing resolves collisions; each entry contains a

search key and its associated value
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Removals

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-5 A hash table if remove used null to remove entries

Removals

• Problem

 h(555-2027) goes

to location 52

 Collision occurs

 Linear probing cannot find desired data

• Removal must be marked differently

 Instead of null, use a value to show slot is

available but location’s entry was removed

• Location reused later for an add

 Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 4 Suggest ways to implement the three states of a location in a hash
table. Should this state be a responsibility of the location or of the dictionary
entry that it references?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 4 Suggest ways to implement the three states of a location in a hash
table. Should this state be a responsibility of the location or of the dictionary
entry that it references?

Since the implementation defines both the hash table and the dictionary
entry, you have a choice as to where to add a field to indicate the state of a
location in a hash table. You could add a field having three states to each
table location, but you really need only a boolean field, since a null location is
empty. If the field is true, the location is occupied; if it is false, it is available.

Adding a similar data field to the dictionary entry instead of to the hash table
leads to a cleaner implementation. As before, if the table location is null, it is
empty. If the entry’s field is true, the location is occupied; if it is false, it is
available. Note that the implementation that appears in the next chapter
uses this scheme.

Clustering

• When collisions resolved with linear

probing

 Groups of consecutive locations occupied

 Called primary clustering

• If clusters grow (size and number) can

cause problems

 Longer searches for retrievals

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-6 A linear probe sequence (a) after adding an entry;

(b) after removing two entries;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-6 A linear probe sequence; (c) after a search; (d)

during the search while adding an entry; (e) after an addition to a

formerly occupied location
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Open Addressing with

Quadratic Probing

• Avoid primary clustering by changing the

probe sequence

• Alternative to going to location k + 1

 Go to k + 1, then k + 4, then k + 9

 In general go to k + j2 for j = 1, 2, 3, …

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-7 A probe sequence of length five using quadratic probing

Open Addressing with

Double Hashing

• Use second hash function to compute

increments in key-dependent way

• Second has function should reach entire

table

• Avoids both primary and secondary

clustering

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-8 The first three locations in a probe sequence

generated by double hashing for the search key 16

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 5 What size hash table should you use with double hashing when
the hash functions are
 h1(key) = key modulo 13
 h2(key) = 7 - key modulo 7
Why?

Question 6 What probe sequence is defined by the hash functions
given in the previous question when the search key is 16?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 5 What size hash table should you use with double hashing when
the hash functions are
 h1(key) = key modulo 13
 h2(key) = 7 - key modulo 7
Why?

Question 6 What probe sequence is defined by the hash functions
given in the previous question when the search key is 16?

13. Since 13 is both prime and the modulo base in h1, the probe
sequence can reach all locations in the table before it repeats.

3, 8, 0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, ...

Potential Problem

with Open Addressing

• Frequent additions and removals

 Can cause every location in hash table to

reference either current entry or former entry

• Could result in unsuccessful search

requiring check of every location

• Possible solutions

 Increase size of hash table (see Ch. 22)

 Separate chaining

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Separate Chaining

• Each location of hash table can represent

multiple values

 Called a “bucket”

• To add, hash to bucket, insert data in first

available slot there

• To retrieve, hash to bucket, traverse

bucket contents

• To delete, hash to bucket, remove item

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Separate Chaining

• Bucket representation

 List (sorted or not)

 Chain of linked nodes

 Array or vector

• Arrays or vectors require extra overhead

• Linked list, chain of linked nodes is

reasonable choice

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 21-9 A hash table for use with separate chaining; each

bucket is a chain of linked nodes

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 7 Consider search keys that are distinct integers. If the hash
function is
 h(key) = key modulo 5
and separate chaining resolves collisions, where in the hash table do the
following search keys appear after being added? 4, 6, 20, 14, 31, 29

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 7 Consider search keys that are distinct integers. If the hash
function is
 h(key) = key modulo 5
and separate chaining resolves collisions, where in the hash table do the
following search keys appear after being added? 4, 6, 20, 14, 31, 29

hashTable[0] → 20
hashTable[1] → 6 → 31
hashTable[2] is null
hashTable[3] is null
hashTable[4] → 4 → 14 → 29

FIGURE 21-10 Where to insert new entry into linked bucket when

integer search keys are (a) unsorted and possibly duplicate;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 21-10 Where to insert new entry into linked bucket when

integer search keys are (b) unsorted and distinct;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 21-10 Where to insert new entry into linked bucket when

integer search keys are (c) sorted and distinct

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 9 Can you define an iteration of a dictionary’s search keys in
sorted order when you use hashing in its implementation? Explain.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 9 Can you define an iteration of a dictionary’s search keys in
sorted order when you use hashing in its implementation? Explain.

No. Suppose that a, b, c, and d are search keys in sorted
order in the hash table. With separate chaining, b and d
might appear in one chain while the other keys appear in
another. Traversing the chains in order will not visit the
keys in sorted order. The same is true of open addressing
when traversing the occupied array locations.

End

Chapter 21

Copyright ©2012 by Pearson Education, Inc. All rights reserved

