
Dictionary Implementations 

Chapter 20 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Contents 

• Array-Based Implementations 

 An Unsorted Array-Based Dictionary 

 A Sorted Array-Based Dictionary 

• Vector-Based Implementations 

• Linked Implementations 

 An Unsorted Linked Dictionary 

 A Sorted Linked Dictionary 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Objectives 

• Implement the ADT dictionary by using 

either  

 An array  

 A vector  

 A chain of linked nodes 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Array-Based Implementations 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Figure 20-1 Two possible ways to use arrays to represent the 

entries in a dictionary: (a) an array of objects that encapsulate 

each search key and corresponding value; (b) parallel arrays of 

search keys and values 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 1  How do the memory requirements for the two representations compare?  



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 1  How do the memory requirements for the two representations compare?  

The memory requirements for the search keys and the values are the same for each 
representation, so let’s ignore them. The memory requirement for the  representation 
shown in (a) uses three references for each entry in the dictionary: one in the array and 
two in the Entry object.  The parallel arrays in (b) require only two references for each 
dictionary entry. Thus, for  n entries in the dictionary, the representation in (a) requires 
3n references, but the representation in (b)  requires only 2n  references. However, if 
each array has a length of  m, where m  is greater than n, (a) has  m   −  n  unused 
locations and (b) has twice that number. 



Array-Based Implementations 

• We will implement an array of objects as 

shown in Figure 20-1a 

• View Listing 20-1 

 Class ArrayDictionary 

 Inner class Entry 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Note: Code listing files 

must  be in same folder  

as  PowerPoint files 

for  links to work 

Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm


Figure 20-2 Adding a new entry to an  

unsorted array-based dictionary 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 20-3 Removing an entry from an  

unsorted array-based dictionary 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Array-Based Implementations 

• Worst case efficiencies 

 Addition O(n) 

 Removal O(n) 

 Retrieval O(n) 

 Traversal O(n) 

• At same time realize overhead required for 

occasionally enlarging array 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



A Sorted Array-Based 

Dictionary 

• Search keys must belong to a class that 
implements the interface Comparable 

• Some of implementation for unsorted 

dictionary can still be used 

• View outline of class, Listing 20-2 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm


Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 2  Describe how the previous algorithm for a sorted 
array-based dictionary differs from the one given in Segment 
20.4 for an unsorted dictionary. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 2  Describe how the previous algorithm for a sorted 
array-based dictionary differs from the one given in Segment 
20.4 for an unsorted dictionary. 

The initial search determines the insertion point when the dictionary is sorted, 
whereas the insertion point for an unsorted dictionary is always right after the 
last entry in the array. Insertion into a sorted dictionary generally requires 
shifting other entries in the array. No  shifting is necessary for an unsorted 
dictionary. 



Figure 20-4 Adding an entry to a sorted array-based dictionary: 

(a) search; 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 20-4 Adding an entry to a sorted array-based dictionary: 

(b) make room; 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 20-4 Adding an entry to a sorted array-based dictionary: 

(c) insert 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 3  A binary search would be faster, in general, than the modified 
sequential search just given—particularly when the dictionary is large. Implement 
the private method locateIndex  for a sorted dictionary using a binary search. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 3  A binary search would be faster, in general, than the modified 
sequential search just given—particularly when the dictionary is large. Implement 
the private method locateIndex  for a sorted dictionary using a binary search. 

private int  locateIndex(K key) 
{     return  binarySearch(0, numberOfEntries - 1, key); 
}  
private int  binarySearch(int  first,  int  last, K key) 
{    int  result; 
 if (first > last) 
  result = first; 
 else 
 { int  mid = first + (last - first) / 2; 
  K midKey = dictionary[mid].getKey(); 
  if (key.equals(midKey)) 
   result = mid; 
  else if (key.compareTo(midKey) < 0) 
   result = binarySearch(first, mid - 1, key); 
  else 
   result = binarySearch(mid + 1, last, key); 
 } 
 return  result; 
} 



FIGURE 20-5 Removing an entry from a sorted array-based 

dictionary: (a) search; 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



FIGURE 20-5 Removing an entry from a sorted array-based 

dictionary: (b) shift entries 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



A Sorted Array-Based 

Dictionary 

• Worst-case efficiencies when 
locateIndex uses a binary search,  

 Addition O(n) 

 Removal O(n) 

 Retrieval O(log n) 

 Traversal O(n) 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 4  When the sorted array-based implementation of a dictionary uses a 
binary search, its retrieval operation is O(log  n ). Since  add  and remove  use a 
similar search, why are they not O(log  n) as well? 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 4  When the sorted array-based implementation of a dictionary uses a 
binary search, its retrieval operation is O(log  n ). Since  add  and remove  use a 
similar search, why are they not O(log  n) as well? 

Typically, add must shift array entries to make room for a new entry, and  remove  
must shift array entries to avoid a vacancy within the array. These shifts of data 
are O( n) operations in the worst case.  The best case occurs when the addition or 
removal is at the end of  the array.  These operations are O(1). 



Vector-Based Implementations 

• Similar in spirit to an array based 

implementation 

• Can use one or two vectors 

• With vector do not need methods 

 ensureCapacity,   

 makeRoom,  

 removeArrayEntry 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Vector-Based Implementations 

• Consider Listing 20-3, 
SortedVectorDictionary 

 

• Note implementation of class 
KeyIterator.  Listing 20-4 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm


Linked Implementations 

• Chain of linked nodes 

• Chain can provide as much storage as 

necessary  

• Encapsulate the two parts of an entry into 

an object 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 20-6 Three possible ways to use linked nodes to 

represent the entries in a dictionary: (a) a chain of nodes that 

each reference an entry object; 
Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 20-6 Three possible ways to use linked nodes to 

represent the entries in a dictionary:  

(b) parallel chains of search keys and values; 
Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 20-6 Three possible ways to use linked nodes to 

represent the entries in a dictionary:  (c) a chain of nodes that 

each reference a search key and a value 
Copyright ©2012 by Pearson Education, Inc. All rights reserved 



An Unsorted Linked Dictionary 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Figure 20-7 Adding to an unsorted linked dictionary 



An Unsorted Linked Dictionary 

• For this implementation, worst-case 

efficiencies of operations 

 Addition O(n) 

 Removal O(n) 

 Retrieval O(n) 

 Traversal O(n) 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 5  To remove an entry from an unsorted array-based 
dictionary, we replaced the removed entry with the last entry in the 
array (see Segment 20.6). Should we use the same strategy to remove 
an entry from an unsorted linked dictionary? Explain. 



Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Question 5  To remove an entry from an unsorted array-based 
dictionary, we replaced the removed entry with the last entry in the 
array (see Segment 20.6). Should we use the same strategy to remove 
an entry from an unsorted linked dictionary? Explain. 

No. Replacing the entry to be removed with the last entry in a chain 
would require a traversal of the chain. We would need references to both 
the last node and the next-to-last node so that we could delete the last 
node.  Although we can ignore the last entry in an array, we should 
shorten the chain by setting the link portion of the next-to-last node to  
null.  Note that having a tail reference does not eliminate the need for a 
traversal, since we need but do not have a reference to the next-to-last 
node . The strategy for an unsorted array-based dictionary avoids shifting 
any of the other entries. No shifting is needed in a linked implementation. 
After locating the node to delete, you simply adjust either the head  
reference or the reference in the preceding node. 



A Sorted Linked Dictionary 

• Adding a new entry requires sequential 

search of chain 

 Do not have to look at the entire chain, only 

until pass node where it should have been 

• Listing 20-5,  class 
SortedLinkedDictionary 

• Note private inner class for iterator,  

Listing 20-6 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 

Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm
Chapter20-code_listings.htm


A Sorted Linked Dictionary 

• Worst case efficiencies of dictionary operations 

for sorted linked implementation 

 Addition O(n) 

 Removal O(n) 

 Retrieval O(n) 

 Traversal O(n) 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



End 

Chapter 20 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 


