
Sorted Lists

Chapter 16

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Specifications for the ADT Sorted List

 Using the ADT Sorted List

• A Linked Implementation

 The Method add

 The Efficiency of the Linked Implementation

• An Implementation That Uses the ADT List

 Efficiency Issues

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Use sorted list in a program

• Describe differences between ADT list and

ADT sorted list

• Implement ADT sorted list by using chain

of linked nodes

• Implement ADT sorted list by using

operations of ADT list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Sorted Lists

• We extend the capability of a list

 Previous example used list to organize names

in alphabetical order

• Consider need to keep list sorted in

numerical or alphabetic order after list

established

 We add or remove an element

 The ADT handles keeping elements in order

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Specifications for the ADT

Sorted List

• Possible operations

 For simplicity, duplicate entries allowed

 Must determine where in list element is added

 Can ask if list contains specified entry

 Must be able to remove an entry

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Abstract Data Type: Sorted List

• Data

 A collection of objects in sorted order and

having same data type

 Number of objects in collection

• Operations

 add(newEntry)

 remove(anEntry)

 getPosition(anEntry)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Abstract Data Type: Sorted List

• Operations used from ADT list (Ch. 12)
 getEntry(givenPosition)

 contains(anEntry)

 remove(givenPosition)

 clear()

 getLength()

 isEmpty()

 toArray()

• Interface, Listing 16-1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

http://tomrebold.com/csis10b/lectures/15_18/Chapter16-code_listings.htm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Suppose that wordList is an unsorted list of words. Using the
operations of the ADT list and the ADT sorted list, create a sorted list of
these words.

Question 2 Assuming that the sorted list you created in the previous
question is not empty, write Java statements that
a. Display the last entry in the sorted list.

b. Add the sorted list’s first entry to the sorted list again.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Suppose that wordList is an unsorted list of words. Using the
operations of the ADT list and the ADT sorted list, create a sorted list of
these words.

Question 2 Assuming that the sorted list you created in the previous
question is not empty, write Java statements that
a. Display the last entry in the sorted list.

b. Add the sorted list’s first entry to the sorted list again.

SortedListInterface<String> sortedWordList = new SortedList<String>();
int numberOfWords = wordList.getLength();
for (int position = 1; position <= numberOfWords; position++)

sortedWordList.add(wordList.getEntry(position));

int length = sortedWordList.getLength();
String lastEntry = sortedWordList.getEntry(length);
System.out.println(lastEntry);

sortedList.add(sortedList.getEntry(1));

A Linked Implementation

• Linked implementation of the ADT sorted

list, Listing 16-2

• Note different versions of method add

 Iterative version

 Recursive version

Copyright ©2012 by Pearson Education, Inc. All rights reserved

http://tomrebold.com/csis10b/lectures/15_18/Chapter16-code_listings.htm
http://tomrebold.com/csis10b/lectures/15_18/Chapter16-code_listings.htm
http://tomrebold.com/csis10b/lectures/15_18/Chapter16-code_listings.htm

Figure 16-1 Places to insert names into a

sorted chain of linked nodes

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 In the while statement of the method getNodeBefore , how important is
the order of the two boolean expressions that the operator && joins? Explain.
while ((currentNode != null) && (anEntry.compareTo (currentNode.getData ()) > 0))

Question 4 What does getNodeBefore return if the sorted list is empty? How can you
use this fact to simplify the implementation of the method add given in Segment 16.10?

Question 5 Suppose that you use the previous method add to add an entry to a sorted
list. If the entry is already in the list, where in the list will add insert it? Before the first
occurrence of the entry, after the first occurrence of the entry, after the last occurrence
of the entry, or somewhere else?

Question 6 What would be the answer to the previous question if you changed > to >=
in the while statement of the method getNodeBefore ?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 In the while statement of the method getNodeBefore , how important is
the order of the two boolean expressions that the operator && joins? Explain.
while ((currentNode != null) && (anEntry.compareTo (currentNode.getData ()) > 0))

Question 4 What does getNodeBefore return if the sorted list is empty? How can you
use this fact to simplify the implementation of the method add given in Segment 16.10?

Question 5 Suppose that you use the previous method add to add an entry to a sorted
list. If the entry is already in the list, where in the list will add insert it? Before the first
occurrence of the entry, after the first occurrence of the entry, after the last occurrence
of the entry, or somewhere else?

Question 6 What would be the answer to the previous question if you changed > to >=
in the while statement of the method getNodeBefore ?

The order is critical. When currentNode is null, currentNode != null is false. Thus, the en
tire expression in the while statement is false without executing the call
currentNode.getData() . If the latter call were to execute first when currentNode was null,
an exception would occur. Thus, the while statement should remain as written.

When the sorted list is empty, getNodeBefore returns null. Thus, in the definition of
add, you can omit the call to isEmpty in the if statement.

Before the first occurrence of the entry.

After the last occurrence of the entry.

Figure 16-2 Recursively adding Luke to a sorted chain of names

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 16-2 Recursively adding Luke to a sorted chain of names

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 16-2 Recursively adding Luke to a sorted chain of names

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 16-3 Recursively adding a node

at the beginning of a chain

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 16-3 Recursively adding a node

at the beginning of a chain

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 16-4 Recursively adding a node

between existing nodes in a chain

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 16-4 Recursively adding a node

between existing nodes in a chain

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 16-4 Recursively adding a node

between existing nodes in a chain

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 8 The linked implementation of the ADT sorted list, as given in this
chapter, does not maintain a tail reference. Why is a tail reference more significant
for a linked implementation of the ADT list than it is for a sorted list?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 8 The linked implementation of the ADT sorted list, as given in this
chapter, does not maintain a tail reference. Why is a tail reference more significant
for a linked implementation of the ADT list than it is for a sorted list?

The method add(newEntry) for a list adds a new entry at the end of the list.
A tail reference makes this method O(1) instead of O(n). For a sorted list,
add(newEntry) must traverse the chain to locate the point of insertion. If
the insertion is at the end of the chain, the traversal will give you a reference
to the last node. A separate tail reference is not needed.

Efficiency of the Linked

Implementation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 16-5 The worst-case efficiencies of the operations on

the ADT sorted list for two implementations

Implementation That

Uses the ADT List

• Sorted list a natural application for ADT list

• Possible ways

 Use list as data field within class that

implements sorted list

 Use inheritance to derive sorted list from list

• Our class SortedList will implement the

interface SortedListInterface

• View source code, Listing 16-A

Copyright ©2012 by Pearson Education, Inc. All rights reserved

http://tomrebold.com/csis10b/lectures/15_18/Chapter16-code_listings.htm

Figure 16-6 An instance of a sorted list that

contains a list of its entries

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 11 If a sorted list contains five duplicate objects and you use the below
method remove to remove one of them, what will be removed from the list: the
first occurrence of the object, the last occurrence of the object, or all occurrences
of the object?

public boolean remove(T anEntry)
{ boolean result = false;

int position = getPosition(anEntry);
if (position > 0)
{ list.remove(position);

result = true;
}
return result;

}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 11 If a sorted list contains five duplicate objects and you use the below
method remove to remove one of them, what will be removed from the list: the
first occurrence of the object, the last occurrence of the object, or all occurrences
of the object?

public boolean remove(T anEntry)
{ boolean result = false;

int position = getPosition(anEntry);
if (position > 0)
{ list.remove(position);

result = true;
}
return result;

}

The first occurrence of the object. Note that getPosition returns the
position of the first occurrence of the entry within the list.

Figure 16-7 A sorted list in which Jamie belongs

after Carlos but before Sarah

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency Issues

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 16-8 The worst-case efficiencies of selected ADT list

operations for array-based and linked implementations

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 15 Give an advantage and a disadvantage of using composition in the
implementation of the class SortedList.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 15 Give an advantage and a disadvantage of using composition in the
implementation of the class SortedList.

Advantage: The implementation is easy to write.

Disadvantage: The implementation is not efficient when the implementation
of the underlying list is linked.

Figure 16-9 The worst-case efficiencies of the ADT sorted list

operations when implemented using an instance of the ADT list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 16

Copyright ©2012 by Pearson Education, Inc. All rights reserved

