
A List

Implementation

That Links Data

Chapter 14

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Operations on a Chain of Linked Nodes

 Adding a Node at Various Positions

 Removing a Node from Various Positions

 The Private Method getNodeAt

 …

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Beginning the Implementation

 The Data Fields and Constructor

 Adding to the End of the List

 Adding at a Given Position Within the List

 The Methods isEmpty and toArray

 Testing the Core Methods
 …

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Continuing the Implementation

• A Refined Implementation

 The Tail Reference

• The Efficiency of Using a Chain to

Implement the ADT List

• Java Class Library: The Class
LinkedList

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe linked organization of data

• Implement add methods of the ADT list by

using linked chain of nodes

• Test partially complete implementation of

a class

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Operations on a Chain

of Linked Nodes

• Adding a Node at Various Positions

 Case 1: Chain is empty

 Case 2: Adding node at chain’s beginning

 Case 3: Adding node between adjacent nodes

 Case 4: Adding node to chain’s end

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Case 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 14-1 (a) An empty chain and a new node;

(b) after adding the new node to a chain that was empty

Case 2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 14-2 A chain of nodes (a) just prior to adding a node at

the beginning; (b) just after adding a node at the beginning

Case 3

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 14-3 A chain of nodes (a) just prior to adding a node

between two adjacent nodes; (b) just after adding a node

between two adjacent nodes

Case 4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 14-4 A chain of nodes

(a) prior to adding a node at the end;

(b) after locating its last node;

(c) after adding a node at the end

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Describe the steps that the method getNodeAt must take to
locate the node at a given position.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Describe the steps that the method getNodeAt must take to
locate the node at a given position.

To locate the nth node in a chain, getNodeAt starts at the first node and counts
nodes as it traverses the chain from node to node, until it reaches the nth
 one. The following pseudocode describes the steps in more detail:

 currentNode = firstNode
 for (counter = 1 to n)
 currentNode = currentNode.getNextNode()

The desired node is at currentNode

Removing a Node

from Various Positions

• Case 1: Removing first node

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 14-5 A chain of nodes (a) just prior to removing the first

node; (b) just after removing the first node

Removing a Node

from Various Positions

• Case 2: Removing node other than first

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 14-6 A chain of nodes (a) just prior to removing an

interior node; (b) just after removing an interior node

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 2 The code that we developed in Segment 14.3 to add a node between
two adjacent nodes of a chain is
 Node newNode = new Node(newEntry);
 Node nodeBefore = getNodeAt(newPosition - 1);
 Node nodeAfter = nodeBefore.getNextNode();
 newNode.setNextNode(nodeAfter);
 nodeBefore.setNextNode(newNode);

Is it possible to use this code instead of the following code, which we just
developed, to add a node to the end of a chai n? Explain your answer.
 Node newNode = new Node(newEntry);
 Node lastNode = getNodeAt(numberOfNodes);
 lastNode.setNextNode(newNode);

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 2 The code that we developed in Segment 14.3 to add a node between
two adja-cent nodes of a chain is
 Node newNode = new Node(newEntry);
 Node nodeBefore = getNodeAt(newPosition - 1);
 Node nodeAfter = nodeBefore.getNextNode();
 newNode.setNextNode(nodeAfter);
 nodeBefore.setNextNode(newNode);

Is it possible to use this code instead of the following code, which we just
developed, to add a node to the end of a chai n? Explain your answer.
 Node newNode = new Node(newEntry);
 Node lastNode = getNodeAt(numberOfNodes);
 lastNode.setNextNode(newNode);

Yes. With newPosition equal to numberOfNodes + 1, nodeBefore will
reference the last n ode in the chain. Moreover, nodeAfter will be null,
newNode ’s link field will be set to null, and the last node’s link will
reference the new node.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 Adding a node to an empty chain could be thought of
as adding a node to the end of a chain that is empty. Can you use
the statements in Segment 14.4 instead of

 Node newNode = new Node(newEntry);
 firstNode = newNode;

which we developed in Segment 14.1 to add a node to an empty
chain? Why or why not?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 Adding a node to an empty chain could be thought of
as adding a node to the end of a chain that is empty. Can you use
the statements in Segment 14.4 instead of

 Node newNode = new Node(newEntry);
 firstNode = newNode;

which we developed in Segment 14.1 to add a node to an empty
chain? Why or why not?

No. The statements given in Segment 14.4 do not assign a new
value to firstNode. Also, when the chain is empty,
numberOfNodes is zero. The precondition of getNodeAt given
in Segment 14.3 requires a positive argument. Even if you
redesign getNodeAt, the empty chain will remain a special case.

The Private Method getNodeAt

• Returns reference to node at specified

position

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 4The statements in Segment 14.4 that add an entry to the end of a
chain invoke the method getNodeAt. Suppose that you use these statements
repeatedly to create a chain by adding entries to its end.
a. How efficient of time is this approach?

b. Is there a faster way to repeatedly add entries to the end of a chain? Explain.

Question 5 How does getNodeAt’s precondition prevent currentNode from
becoming null?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 4 The statements in Segment 14.4 that add an entry to the end of a
chain invoke the method getNodeAt. Suppose that you use these statements
repeatedly to create a chain by adding entries to its end.
a. How efficient of time is this approach?

b. Is there a faster way to repeatedly add entries to the end of a chain? Explain.

Question 5 How does getNodeAt’s precondition prevent currentNode from
becoming null?

a. This approach is inefficient of time, since each addition causes getNodeAt to
traverse the chain from its beginning until it locates the chain’s last node. Thus, each
addition depends on the length of the chain.

b. Maintaining a tail reference would allow additions to the end of the chain
to occur in O(1) time, that is, independently of the length of the chain.

Since the chain is not empty, firstNode is not null. Thus, currentNode ’s initial value is
not null. The loop in getNodeAt can iterate no more than numberOfNodes - 1 times.
After the first iteration, currentNode references the second node. After the second
iteration, it references the third node. If the loop were to iterate numberOfNodes -
1 times, currentNode would reference the last node. It would not be null.

Beginning the Implementation

• Design Decision:

 The structure of the chain of linked nodes

• Add statements at beginning

 Use code from Cases 1 and 2

• Add at end

 Must invoke getNodeAt

 Could maintain both head and tail references

(deferred until later)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 14-7 A linked chain with (a) a head reference;

(b) both a head reference and a tail reference

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Implementation

• View whole class, Listing 14-1

• Note

 Methods for add

 Method isEmpty

 Method toArray

• Consider initial test program, Listing 14-2

 Output of listing 14-2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm

Implementation

• Finishing the implementation

 Method remove

 Method replace

 Method contains

• Refining the implementation

 Add tail reference

 Avoids traversal of entire chain when add is

called

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 14 Compare the time required to replace an entry in a list using
the previous method replace with the time required for the array-based
version given in Segment 13.12.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 14 Compare the time required to replace an entry in a list using
the previous method replace with the time required for the array-based
version given in Segment 13.12.

The method replace given in this chapter performs more work than an
array-based replace because it must traverse the chain to locate the entry
to replace. An array-based replace can locate the desired entry directly,
given its array index.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 17 What is the Big Oh of the method toArray, as given in
Segment 14.14?

Question 18 What is the Big Oh of the method remove, as given in
Segment 14.16?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 17 What is the Big Oh of the method toArray, as given in
Segment 14.14?

Question 18 What is the Big Oh of the method remove, as given in
Segment 14.16?

O(n).

O(1) when removing the first entry, or O(n) otherwise.

Figure 14-8 A linked chain with both a head

reference and a tail reference

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Implement with Tail Reference

• Must alter method clear

 lastNode = null;

• Adding to end of list

 For empty list, head and tail reference new

node

 For non-empty list, use
lastNode.setNextNode(newNode);

lastNode = newNode;

• View changes, Listing 14-A

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter14-code_listings.htm
Chapter14-code_listings.htm
Chapter14-code_listings.htm

FIGURE 14-9 Adding a node to the end of a nonempty

chain that has a tail reference
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 14-11 The time efficiencies of the ADT list operations for

three implementations, expressed in Big Oh notation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Design Decisions

• Efficiency of execution vs. implementation

time

• Issues include:

 Access time

• Add, remove, search

 Memory usage

• Overhead for pointers

• Wasted memory for arrays

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library:
The Class LinkedList

•ListInterface similar to what we

have defined

 Has more methods

 May use different name for method

• Class LinkedList

 Implements List, Queue, Deque

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 14

Copyright ©2012 by Pearson Education, Inc. All rights reserved

