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Objectives

Describe operations of ADT queue
Jse gqueue to simulate waiting line

Jse gueue In program that organizes data
In first-in, first-out manner

Describe operations of ADT deque
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Objectives

» Use deque in program that organizes data
chronologically and can operate on both
oldest and newest entries

* Describe operations of ADT priority queue

=« Use priority queue Iin program that
organizes data objects according to
priorities
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Queue

» Another name for a waiting line
= Used within operating systems
= Simulate real world events
= First in, first out (FIFO)
» Consider double ended queue (deque)
= Possible to manipulate both ends of queue

* When multiple queues exist, priority can
be established
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Figure 10-1 Some everyday queues
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Abstract Data Type: Queue

* A collection of objects in chronological
order and having the same data type
* Operations

= enqueue(newEntry)
= dequeuel()

. Note: Code listing files
e . getFront() must be in same folder
e as PowerPoint files
m isEmpty() for links to work
= clear()

* Interface for Queue, Listing 10-1
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(b) ( Jim ) ( Jess )

(c) ( Jim ) ( Jess )( Jill )

(d) ( Jim )( Jess )( Jl ) ( Jane )

Figure 10-2 A queue of strings after (a) enqueue adds Jim;
(b) enqueue adds Jess; (c) enqueue adds Jill;
(d) enqueue adds Jane;
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(e) ( Jim ) C Jess )( Jill )( Jane )( Joe )

(f) @ ( Jess )C Jill )( Jane )( Joe )
(g) (Jess )( Jil )( Jane ) ( Joe ) ( Jerry )

w 2 GO G oD Gad

Figure 10-2 A queue of strings after (e) enqueue
adds Joe; (f) dequeue retrieves and removes Jim; (g) engueue
adds Jerry; (h) dequeue retrieves and removes Jess;
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Question 1 After the following nine statements execute, what string is at the
front of the queue and what string is at the back?
Queuelnterface<String> myQueue = new LinkedQueue<String>();
myQueue.enqueue("Jim");
myQueue.enqueue("Jess");
myQueue.enqueue("Jill");

- myQueue.enqueue("Jane”);

> String name = myQueue.dequeue();
myQueue.enqueue(name);

_— myQueue.enqueue(myQueue.getFront());

P4

Vs name = myQueue.dequeue();



1. Jill is at the front, Jess Is at the back.

Copyright ©2012 by Pearson Education, Inc. All rights reserved



/Simulating a Waiting Line

=

ITICKETS

”%?ﬁ 79
i

Figure 10-3 A line, or queue, of people
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WaltLine

Responsibilities

Simulate customers entering and leaving a

waiting line

Display number served, total wait time,

average wait time, and number left in line

Collaborations

Customer

Figure 10-4 A CRC card for the class WwaitLine
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WaitLine

11ne—a queue of customers

numberOfArrival s—number of customers
numberServed—number of customers actually served
totalTimeWaited—total time customers have waited

simulate(duration, arrivalProbability, maxTransactionTime)
displayResults()

Customer

"

arrivalTime
transactionTime
customerNumber

getArrivalTime()
getTransactionTime()
getCustomerNumber ()

Figure 10-5 A diagram of the classes waitLine and Customer
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Algorithm for simulate

Algorithm simulate(duration, arrivalProbability, maxTransactionTime)
transactionTimeLeft = 0
for (clock = 0; clock < duration; clock++)

{

if (a new customer arrives)

{
number0fArrival s++
transactionTime = a random time that does not exceed maxTransactionTime
nextArrival = a new customer containing clock, transactionTime, and

a customer number that is numberOfArrivals

Tine.enqueue(nextArrival)

}

if (transactionTimeLeft > 0) if present customer is still being served
transactionTimelLeft--

else if (11ine.isEmpty())

{
nextCustomer = line.dequeue()
transactionTimeLeft = nextCustomer.getTransactionTime() -1
timeWaited = clock - nextCustomer.getArrivalTime()
totalTimeWaited = totalTimeWaited + timeWaited
numberServed++

}

}
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Transaction time left: 5

Customer 1 enters line with a 5-minute transaction.
A1 N Customer 1 begins service after waiting 0 minutes.

Time: 0 Wait: 0

Transaction time left: 4

Transaction time lefi:

/Q\ Customer 1 continues to be served.
Customer 2 enters line with a 3-minute transaction.
Time: 2

Transaction time left:

@ /O\ f()\ Customer 1 continues to be served.

Time: 3

Transaction time lefi:
Customer 1 continues to be served.
@ Customer 3 enfers line with a 1-minute transaction.

l]gl\ffaufwfuf“\zﬂw E N T N T N R Y A N R T O g N e Nt N o SNy W

Figure 10-6 A simulated waiting line
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Transaction time left: 3

Customer 1 finishes and departs.
@ Customer 2 begins service after waiting 3 minutes.
A2 N Customer 4 enters line with a 2-minute transaction.

Time: 5 Wait: 3

Transaction time left: 2

@ /g:)\ f-C)\ /Q\ Customer 2 continues to be served.

Time: 6

Transaction time left:

/Q /Q f()\ /_O\ Customer 2 continues to be served.
Customer 5 enters line with a 4-minute transaction.
Time: 7

Transaction time left:

Customer 2 finishes and departs.
@ /% /-Q\ /Q Customer 3 begins service after waiting 4 minutes.
AN

Time: 8 Wait: 4
Transaction time left: 2
Customer 3 finishes and departs
N 4N Customer 4 begins service after waiting 4 minutes.
Time: 9 Wait: 4

Figure 10-6 A simulated waiting line
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Question 2 Consider the simulation begun In
Figure 10-6.
a. At what time does Customer 4 finish and depart?

b. How long does Customer 5 walit before beginning
the transaction?
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Class WaitLine

* Implementation of class WaitLine

Listing 10-2
WaitLine customerLine = new WaitLine();
° Statements customerLine.simulate(20, 0.5, 5);

customerLine.displayResults();

» Generate line for 20 minutes
= 50 percent arrival probability
» 5-minute maximum transaction time.

* View sample output
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Computing Capital Gain for
Stock Sale

« Buying n shares at $d
= Then selling — gain or lose money
= * We seekaway to

= Record your investment transactions
. chronologically

= Compute capital gain of any stock sale.
* We design a class, StockPurchase




StocklLedger

Responsibilities
Record the shares of a stock purchaseéd. in

chronological order
Remove the shares of a stock sold, beginning

with the ones held the longest
Compute the capital gain (loss) on shares of a

stock sold

Collaborations
Share of stock

Figure 10-7 A CRC card for the class StockLedger
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StockLedger

ledger—a collection of shares owned, in order of their purchase

buy(sharesBought, pricePerShare)
sel1(sharesSold, pricePerShare)

StockPurchase

cost—cost of one share

getCostPerShare()

Figure 10-8 A diagram of the classes StockLedger
and StockPurchase
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Computing Capital Gain for

Stock Sale

* View class implementation
Listing 10-3

(a)
@@

(b)
3()@- L) )

Figure 10-9 A queue of (a) individual shares of stock;
(b) grouped shares
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Java Class Library

* |[nterface Queue

public
public
public
public
public
public
public
public
public

boolean add (T newEntry)
boolean offer (T newEntry)
T remove ()

T poll ()

T element ()

T peek()

boolean isEmpty ()

void clear ()

int size()
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ADT Deque

* Need for an ADT which offers

= Add, remove, retrieve
= At both front and back of a queue

* Double ended queue
= Called a deque
= Pronounced “deck”

» Actually behaves more like a double
ended stack




ADT Deque

* Note deque Interface,
Listing 10-4

The deque d

d.addToFront (item) d.addToBack(item)
d.removeFront() O O O O d.removeBack()
d.getFront()----"""""" JARREDE d.getBack()

Front Back

Figure 10-10 An instance d of a deque

J Copyright ©2012 by Pearson Education, Inc. All rights reserved
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(a) Add

(b) Remove

(c) Retrieve

The stack s, queue d, or deque d

s.push(item) 1 g.enqueue(item)
d.addToFront(item) j— d.addToBack(item)

Front (top) Back

.popQ)
.dequeue() OU O O d. removeBack ()
.removeFront()

Front (top) Back

peek() === .

etFront o EDDUUOU ....... i getBackO

.getFront () -==-""""

Front (top) Back

FIGURE 10-11 A comparison of operations for a stack s, a
gueue g, and a deque d: (a) add; (b) remove; (c) retrieve
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Question 3 After the following nine statements execute,
what string is at the front of the deque and what string is at
the back?

Dequelnterface<String> myDeque = new LinkedDeque<String>();

myDeque.addToFront("Jim");

myDeque.addToBack("Jess");

myDeque.addToFront("Jill");

myDeque.addToBack("Jane");

String name = myDeque.getFront();

myDeque.addToBack(name);

myDeque.removeFront();

myDeque.addToFront(myDeqgue.removeBack());




3. Jill is at the front, Jane Is at the back.
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. =Tt 0] zii*a.'u-é.'&.»__ : N ;—.
Computing Capital Gain for

Stock Sale

* Revise implementation of class
StockLedger

= Data field 1ledger now an instance of deque
= Note method buy

public veid buy(int sharesBought, double pricePerShare)

{

StockPurchase purchase = new StockPurchase(sharesBought, pricePerShare);
ledger.addToBack(purchase);

}

= View method sell, Listing 10-A
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Java Class Library

* Interface Deque

public
public
public
public
public
public
public
public

void addFirst (T newEntry)
boolean offerFirst (T newEntry)
void addLast (T newEntry)
boolean offerlast (T newEntry)
T removeFirst ()

T pollFirst ()

T removelast ()

T pollLast()




Java Class Library

* Interface Deque

public
public
public
Public
public
public
public

T getFirst ()

T peekFirst()

T getLast()

T peekLast ()
boolean isEmpty ()
void clear ()

int size()
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Java Class Library

« Deque extends Queue
* Thus Inherits

* add, offer, remove, poll, element, peek

 Adds additional methods
= push, pop
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Java Class Library

» Class ArrayDeque

= Implements Deque
* Note — has methods appropriate for
deque, queue, and stack
= Could be used for instances of any of these

* Constructors
= public ArrayDeque ()
» public ArrayDeque (int initialCapacity)
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ADT Priority Queue

« Contrast bank gueue and emergency
= room queue(s)

« ADT priority gueue organizes objects
~» according to their priorities

K7
—

" « Note interface, Listing 10-5
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Question 4 After the following statements execute, what
string is at the front of the priority queue and what string is
at the back?

PriorityQueuelnterface<String> myPriorityQueue =

new LinkedPriorityQueue<String>();

myPriorityQueue.add("Jane");

myPriorityQueue.add("Jim");

myPriorityQueue.add("Jill");

String name = myPriorityQueue.remove();

myPriorityQueue.add(name);

myPriorityQueue.add("Jess");




4. Jane Is at the front, Jim Is at the back.
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Problem: Tracking Your -
Assignments

« Consider tasks assigned with due dates

« We use a priority queue to organize in due
date order

Assignment

course—the course code
task—a description of the assignment
date—the due date

getCourseCode()
getTask()
getDueDate()
compareTo()

Figure 10-12 A diagram of the class Assignment
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Tracking Your Assignments

* Note implementation of class
AssignmentLog, Listing 10-6

Assignmentlog

log—a priority queue of assignments

addProject (newAssignment)
addProject(courseCode, task, dueDate)
getNextProject()

removeNextProject()

Figure 10-13 A diagram of the class AssignmentLog
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Java Class Library

* Class PriorityQueue constructors and
methods
» public PriorityQueue ()

» public PriorityQueue (
int initialCapacity)

* public boolean add (T newEntry)

* public boolean offer (T newEntry)
* public T remove ()

* public T poll()
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Java Class Library

» Class PriorityQueue methods, ctd.
» public T element ()
" public T peek()
* public boolean isEmpty ()
" public void clear ()

* public int size()
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