Queues, Deques
and Priority Queues

Chapter 10

TTTTTTTTTTTT

Data Structures
and Abstractions

with -
Java FRANK M. CARRANO

= Ty e

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al e T

Contents

 The ADT Queue

= A Problem Solved: Simulating a Waiting Line

= A Problem Solved: Computing the Capital
Gain in a Sale of Stock

= Java Class Library: The Interface Queue

Wi

.,.

ALl lo-_ T
Contents

 The ADT Deque

= A Problem Solved: Computing the Capital
Gain in a Sale of Stock

= Java Class Library: The Interface Deque
= Java Class Library: The Class ArrayDeque

 The ADT Priority Queue

= A Problem Solved: Tracking Your
Assignments

= Java Class Library: The Class
PriorityQueue

A

ATl e T

Objectives

Describe operations of ADT queue
Jse gqueue to simulate waiting line

Jse gueue In program that organizes data
In first-in, first-out manner

Describe operations of ADT deque

ATl e T

Objectives

» Use deque in program that organizes data
chronologically and can operate on both
oldest and newest entries

* Describe operations of ADT priority queue

=« Use priority queue Iin program that
organizes data objects according to
priorities

Wi

'-.:..?'u ;’3

Wi

L

L |
._ ¥

ATl e T

Queue

» Another name for a waiting line
= Used within operating systems
= Simulate real world events
= First in, first out (FIFO)
» Consider double ended queue (deque)
= Possible to manipulate both ends of queue

* When multiple queues exist, priority can
be established

Rk

Figure 10-1 Some everyday queues

J Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al oo T : it

Abstract Data Type: Queue

* A collection of objects in chronological
order and having the same data type
* Operations

= enqueue(newEntry)
= dequeuel()

. Note: Code listing files
e . getFront() must be in same folder
e as PowerPoint files
m isEmpty() for links to work
= clear()

* Interface for Queue, Listing 10-1

Chapter10-code_listings.htm
Chapter10-code_listings.htm
Chapter10-code_listings.htm

(b) (Jim) (Jess)

(c) (Jim) (Jess)(Jill)

(d) (Jim)(Jess)(Jl) (Jane)

Figure 10-2 A queue of strings after (a) enqueue adds Jim;
(b) enqueue adds Jess; (c) enqueue adds Jill;
(d) enqueue adds Jane;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(e) (Jim) C Jess)(Jill)(Jane)(Joe)

(f) @ (Jess)C Jill)(Jane)(Joe)
(g) (Jess)(Jil)(Jane) (Joe) (Jerry)

w 2 GO G oD Gad

Figure 10-2 A queue of strings after (e) enqueue
adds Joe; (f) dequeue retrieves and removes Jim; (g) engueue
adds Jerry; (h) dequeue retrieves and removes Jess;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

St P
n oM L ehga .

. -

-
Question 1 After the following nine statements execute, what string is at the
front of the queue and what string is at the back?
Queuelnterface<String> myQueue = new LinkedQueue<String>();
myQueue.enqueue("Jim");
myQueue.enqueue("Jess");
myQueue.enqueue("Jill");

- myQueue.enqueue("Jane”);

> String name = myQueue.dequeue();
myQueue.enqueue(name);

_— myQueue.enqueue(myQueue.getFront());

P4

Vs name = myQueue.dequeue();

1. Jill is at the front, Jess Is at the back.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

/Simulating a Waiting Line

=

ITICKETS

”%?ﬁ 79
i

Figure 10-3 A line, or queue, of people

Copyright ©2012 by Pearson Education, Inc. All rights reserved

WaltLine

Responsibilities

Simulate customers entering and leaving a

waiting line

Display number served, total wait time,

average wait time, and number left in line

Collaborations

Customer

Figure 10-4 A CRC card for the class WwaitLine

Copyright ©2012 by Pearson Education, Inc. All rights reserved

WaitLine

11ne—a queue of customers

numberOfArrival s—number of customers
numberServed—number of customers actually served
totalTimeWaited—total time customers have waited

simulate(duration, arrivalProbability, maxTransactionTime)
displayResults()

Customer

"

arrivalTime
transactionTime
customerNumber

getArrivalTime()
getTransactionTime()
getCustomerNumber ()

Figure 10-5 A diagram of the classes waitLine and Customer

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm for simulate

Algorithm simulate(duration, arrivalProbability, maxTransactionTime)
transactionTimeLeft = 0
for (clock = 0; clock < duration; clock++)

{

if (a new customer arrives)

{
number0fArrival s++
transactionTime = a random time that does not exceed maxTransactionTime
nextArrival = a new customer containing clock, transactionTime, and

a customer number that is numberOfArrivals

Tine.enqueue(nextArrival)

}

if (transactionTimeLeft > 0) if present customer is still being served
transactionTimelLeft--

else if (11ine.isEmpty())

{
nextCustomer = line.dequeue()
transactionTimeLeft = nextCustomer.getTransactionTime() -1
timeWaited = clock - nextCustomer.getArrivalTime()
totalTimeWaited = totalTimeWaited + timeWaited
numberServed++

}

}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Transaction time left: 5

Customer 1 enters line with a 5-minute transaction.
A1 N Customer 1 begins service after waiting 0 minutes.

Time: 0 Wait: 0

Transaction time left: 4

Transaction time lefi:

/Q\ Customer 1 continues to be served.
Customer 2 enters line with a 3-minute transaction.
Time: 2

Transaction time left:

@ /O\ f()\ Customer 1 continues to be served.

Time: 3

Transaction time lefi:
Customer 1 continues to be served.
@ Customer 3 enfers line with a 1-minute transaction.

l]gl\ffaufwfuf“\zﬂw E N T N T N R Y A N R T O g N e Nt N o SNy W

Figure 10-6 A simulated waiting line

Copyright ©2012 by Pearson Education, Inc. All rights reserved

R N i B ™ B e R R Al P AP P N P S S P L L

Transaction time left: 3

Customer 1 finishes and departs.
@ Customer 2 begins service after waiting 3 minutes.
A2 N Customer 4 enters line with a 2-minute transaction.

Time: 5 Wait: 3

Transaction time left: 2

@ /g:)\ f-C)\ /Q\ Customer 2 continues to be served.

Time: 6

Transaction time left:

/Q /Q f()\ /_O\ Customer 2 continues to be served.
Customer 5 enters line with a 4-minute transaction.
Time: 7

Transaction time left:

Customer 2 finishes and departs.
@ /% /-Q\ /Q Customer 3 begins service after waiting 4 minutes.
AN

Time: 8 Wait: 4
Transaction time left: 2
Customer 3 finishes and departs
N 4N Customer 4 begins service after waiting 4 minutes.
Time: 9 Wait: 4

Figure 10-6 A simulated waiting line

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 2 Consider the simulation begun In
Figure 10-6.
a. At what time does Customer 4 finish and depart?

b. How long does Customer 5 walit before beginning
the transaction?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al le-__ T N

Class WaitLine

* Implementation of class WaitLine

Listing 10-2
WaitLine customerLine = new WaitLine();
° Statements customerLine.simulate(20, 0.5, 5);

customerLine.displayResults();

» Generate line for 20 minutes
= 50 percent arrival probability
» 5-minute maximum transaction time.

* View sample output

Chapter10-code_listings.htm
Chapter10-code_listings.htm
Chapter10-code_listings.htm
Chapter10-code_listings.htm

Aeal o T G

Computing Capital Gain for
Stock Sale

« Buying n shares at $d
= Then selling — gain or lose money
= * We seekaway to

= Record your investment transactions
. chronologically

= Compute capital gain of any stock sale.
* We design a class, StockPurchase

StocklLedger

Responsibilities
Record the shares of a stock purchaseéd. in

chronological order
Remove the shares of a stock sold, beginning

with the ones held the longest
Compute the capital gain (loss) on shares of a

stock sold

Collaborations
Share of stock

Figure 10-7 A CRC card for the class StockLedger

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A

=

StockLedger

ledger—a collection of shares owned, in order of their purchase

buy(sharesBought, pricePerShare)
sel1(sharesSold, pricePerShare)

StockPurchase

cost—cost of one share

getCostPerShare()

Figure 10-8 A diagram of the classes StockLedger
and StockPurchase

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Computing Capital Gain for

Stock Sale

* View class implementation
Listing 10-3

(a)
@@

(b)
3()@- L))

Figure 10-9 A queue of (a) individual shares of stock;
(b) grouped shares

Copyright ©2012 by Pearson Education, Inc. All rights reserved

™~

-

Chapter10-code_listings.htm
Chapter10-code_listings.htm
Chapter10-code_listings.htm

A

) r;-.:.;;.; ka

Java Class Library

* |[nterface Queue

public
public
public
public
public
public
public
public
public

boolean add (T newEntry)
boolean offer (T newEntry)
T remove ()

T poll ()

T element ()

T peek()

boolean isEmpty ()

void clear ()

int size()

A

ATl e T

ADT Deque

* Need for an ADT which offers

= Add, remove, retrieve
= At both front and back of a queue

* Double ended queue
= Called a deque
= Pronounced “deck”

» Actually behaves more like a double
ended stack

ADT Deque

* Note deque Interface,
Listing 10-4

The deque d

d.addToFront (item) d.addToBack(item)
d.removeFront() O O O O d.removeBack()
d.getFront()----"""""" JARREDE d.getBack()

Front Back

Figure 10-10 An instance d of a deque

J Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter10-code_listings.htm
Chapter10-code_listings.htm
Chapter10-code_listings.htm

(a) Add

(b) Remove

(c) Retrieve

The stack s, queue d, or deque d

s.push(item) 1 g.enqueue(item)
d.addToFront(item) j— d.addToBack(item)

Front (top) Back

.popQ)
.dequeue() OU O O d. removeBack ()
.removeFront()

Front (top) Back

peek() === .

etFront o EDDUUOU i getBackO

.getFront () -==-""""

Front (top) Back

FIGURE 10-11 A comparison of operations for a stack s, a
gueue g, and a deque d: (a) add; (b) remove; (c) retrieve

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al e T

Question 3 After the following nine statements execute,
what string is at the front of the deque and what string is at
the back?

Dequelnterface<String> myDeque = new LinkedDeque<String>();

myDeque.addToFront("Jim");

myDeque.addToBack("Jess");

myDeque.addToFront("Jill");

myDeque.addToBack("Jane");

String name = myDeque.getFront();

myDeque.addToBack(name);

myDeque.removeFront();

myDeque.addToFront(myDeqgue.removeBack());

3. Jill is at the front, Jane Is at the back.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

. =Tt 0] zii*a.'u-é.'&.»__ : N ;—.
Computing Capital Gain for

Stock Sale

* Revise implementation of class
StockLedger

= Data field 1ledger now an instance of deque
= Note method buy

public veid buy(int sharesBought, double pricePerShare)

{

StockPurchase purchase = new StockPurchase(sharesBought, pricePerShare);
ledger.addToBack(purchase);

}

= View method sell, Listing 10-A

Chapter10-code_listings.htm
Chapter10-code_listings.htm
Chapter10-code_listings.htm

Wi

.-.:“,'_, Pz

ATl e T

Java Class Library

* Interface Deque

public
public
public
public
public
public
public
public

void addFirst (T newEntry)
boolean offerFirst (T newEntry)
void addLast (T newEntry)
boolean offerlast (T newEntry)
T removeFirst ()

T pollFirst ()

T removelast ()

T pollLast()

Java Class Library

* Interface Deque

public
public
public
Public
public
public
public

T getFirst ()

T peekFirst()

T getLast()

T peekLast ()
boolean isEmpty ()
void clear ()

int size()

ATl e T

Java Class Library

« Deque extends Queue
* Thus Inherits

* add, offer, remove, poll, element, peek

 Adds additional methods
= push, pop

Wi

ATl e T

Java Class Library

» Class ArrayDeque

= Implements Deque
* Note — has methods appropriate for
deque, queue, and stack
= Could be used for instances of any of these

* Constructors
= public ArrayDeque ()
» public ArrayDeque (int initialCapacity)

aAalrae .-

T —

ADT Priority Queue

« Contrast bank gueue and emergency
= room queue(s)

« ADT priority gueue organizes objects
~» according to their priorities

K7
—

" « Note interface, Listing 10-5

Chapter10-code_listings.htm
Chapter10-code_listings.htm
Chapter10-code_listings.htm

Question 4 After the following statements execute, what
string is at the front of the priority queue and what string is
at the back?

PriorityQueuelnterface<String> myPriorityQueue =

new LinkedPriorityQueue<String>();

myPriorityQueue.add("Jane");

myPriorityQueue.add("Jim");

myPriorityQueue.add("Jill");

String name = myPriorityQueue.remove();

myPriorityQueue.add(name);

myPriorityQueue.add("Jess");

4. Jane Is at the front, Jim Is at the back.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

aAalrae .- =l
<.

Problem: Tracking Your -
Assignments

« Consider tasks assigned with due dates

« We use a priority queue to organize in due
date order

Assignment

course—the course code
task—a description of the assignment
date—the due date

getCourseCode()
getTask()
getDueDate()
compareTo()

Figure 10-12 A diagram of the class Assignment

Al le-_ T Y

Tracking Your Assignments

* Note implementation of class
AssignmentLog, Listing 10-6

Assignmentlog

log—a priority queue of assignments

addProject (newAssignment)
addProject(courseCode, task, dueDate)
getNextProject()

removeNextProject()

Figure 10-13 A diagram of the class AssignmentLog

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter10-code_listings.htm
Chapter10-code_listings.htm
Chapter10-code_listings.htm

Wi

ATl e T

Java Class Library

* Class PriorityQueue constructors and
methods
» public PriorityQueue ()

» public PriorityQueue (
int initialCapacity)

* public boolean add (T newEntry)

* public boolean offer (T newEntry)
* public T remove ()

* public T poll()

A

e S

Java Class Library

» Class PriorityQueue methods, ctd.
» public T element ()
" public T peek()
* public boolean isEmpty ()
" public void clear ()

* public int size()

Chapter 10

Copyright ©2012 by Pearson Education, Inc. All rights reserved

