Ilterators

Chapter 15

IIIIIIIIIIII

Data Structures
and Abstractions

with )
Java FRANK M. CARRANO
TR N e

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Wi

,-‘.7_,:'., Pz

ALl lo-_ T
Contents

What Is an Iterator?

The Interface Iterator

= Using the Interface Iterator
A Separate Class Iterator

An Inner Class lterator
= A Linked Implementation
= An Array-Based Implementation

Why Are lterator Methods in Their Own
Class?




Wi

ALl lo-_ T
Contents

* The Interface ListIterator
= Using the Interface ListIterator

* An Array-Based Implementation of the
Interface ListIterator

= The Inner Class

» Java Class Library: The Interface
Iterable

= Tterable and for-each Loops
= The Interface List Revisited




Wi

ATl e T

Objectives

Describe concept of iterator
Use iterator to traverse, manipulate a list

Implement In Java separate class iterator,
Inner class iterator for list

Describe pros and cons of separate class
iterators, inner class iterators




ATl e T

What Is an lterator?

Program component
= Enables you to step through, or
= Traverse, a collection of data

During a ’[raversa| Note: Code listing files

must be in same folder
= Each data item consid( @as PowerPoint files

for links to work
When we write loops
= They traverse, iterate through whole list
Consider interface Iterator, Listing 15-1



Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

(a) Before next ()

Joe A Jen

[terator cursor

(b) After next () returns Jen

Joe Jen A

Iterator cursor

Figure 15-1 The effect of a call to next on a list iterator

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Wi

ATl e T

Using the Interface Iterator

* Implement iterator methods within their
own class
= Can be private, separate from ADT class
= Or private, inner class of ADT

» Consider list of strings
ListInterface<String> namelist = new
LList<String>() ;
nameList.add ("Jamie") ;
nameList.add ("Joey") ;
namelList.add ("Rachel") ;

SN

o

~



ALl lo-_ T - ;".

oY

Using the Interface Iterator

* Create an instance of separateIterator

Iterator<String> namelterator = new
Separatelterator<String>(namelist) ;

Wi

L |
._ ¥

 Connects the iterator
nameIterator tO the list nameList



Iterator cursor p

Jamie
Joey
Rachel

> ;amle
oey
Rachel

Jamie

Joey
> Rachel

P N T N T At A oW sV U NPV L N S S ST PSP P S SN Y b A X AN

Figure 15-2 The effect of the iterator methods

hasNext () returns true

next () returns Jamie and
advances the iterator

next () returns Joey and
advances the iterator

hasNext and next on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved



R e A B T Lol N Ll i e R e I Y v I i SR

Jamie
Joey next () returns Rachel and
Rachel advances the iterator

>
Jamie
Joe hasNext() returns false;
Raghel next() causes a NoSuchETementException

>

Figure 15-2 The effect of the iterator methods
hasNext and next on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Iterator cursor

Andy
Brittany
Chris

Andy
> Brittany
Chris

Andy
Brittany
> Chris

next() returns Andy and
advances the iterator

next() returns Brittany and
advances the iterator

FEE b Jo g s p g g T T g AT P o PR g g pp [ fE L AR S o Ry Pt p g S

Figure 15-3 The effect of the iterator methods
next and remove on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved



B i el M ™ o e il T e i e Y A= i P
> Andy
Chris remove() removes Briftany from the list
And :
Chrig next() returns Chris and
> advances the iterator

Figure 15-3 The effect of the iterator methods
next and remove on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved



e ;6
=
Question 1 Assume that namelList contains the names Jamie, Joey, and Rachel, as
it does in Segment 15.6. What output is produced by the following Java
statements?
lterator<String> namelterator = new Separatelterator<String>(nameList);
namelterator.next();
namelterator.next();
namelterator.remove();
System.out.printin(namelterator.hasNext());
System.out.printin(namelterator.next());

Question 2 Assume that namelist is an instance of a class that implements
ListInterface, and namelterator is defined as in the previous question. If namelList
contains at least three strings, write Java statements that display the list’s third

entry.



Al le-__ T N P s
B

Question 1 Assume that namelList contains the names Jamie, Joey, and Rachel, as
it does in Segment 15.6. What output is produced by the following Java
statements?

lterator<String> namelterator = new Separatelterator<String>(nameList);

namelterator.next();

namelterator.next();

namelterator.remove();

System.out.printin(namelterator.hasNext());

System.out.printin(namelterator.next());

true
Rachel

Question 2 Assume that namelist is an instance of a class that implements
ListInterface, and namelterator is defined as in the previous question. If namelList
contains at least three strings, write Java statements that display the list’s third
entry.

namelterator.next();

namelterator.next();

System.out.printin(namelterator.next());

-



cam TN ™,

Question 3 Given namelist and namelterator as described in the previous
guestion, write statements that display the even-numbered entries in the list. That
is, display the second entry, the fourth entry, and so on.

Question 4 Given namelist and namelterator as described in Question 2, write
statements that remove all entries from the list.

Copyright ©2012 by Pearson Education, Inc. All rights reserved




- AR les o WREE . = :g

Question 3 Given namelist and namelterator as described in the previous
guestion, write statements that display the even-numbered entries in the list. That
is, display the second entry, the fourth entry, and so on.

namelterator.next(); // skip first entry; list has > 1 entry
while (namelterator.hasNext())
{ System.out.println(namelterator.next()); // display even-numbered entry
if (namelterator.hasNext())
namelterator.next(); // skip odd-numbered entry
}

Question 4 Given namelist and namelterator as described in Question 2, write
statements that remove all entries from the list.

while (namelterator.hasNext())
{ namelterator.next();
namelterator.remove();

J Copyright ©2012 by Pearson Education, Inc. All rights reserved



e g™ X
e
s

Multiple Iterators

* Possible to have multiple iterators of the
p same list In progress simultaneously

= « View code which counts number of times
that Jane appears in a list of names

sa Listing 15-A

~ « Output of Listing 15-A



Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

Number of times
Jane appears in list

Brad @ Righthand 0
as it
advances

tethnd 857 " T lbown !
the list

Bob @- 1

Jane @ 2

Bette @ 2

Brad @ 2

e G 3

Brenda @ 3

Jare oceurs
3 times

Figure 15-4 Counting the number of times that
Jane appears in a list of names

Copyright ©2012 by Pearson Education, Inc. All rights reserved



ATl e T

A Separate Class lterator

» Implementation of class
Separatelterator

= Implements the interface
java.util.Iterator

. * View source code, Listing 15-2
‘ * Note: definition of Separatelterator
iIndependent of a particular implementation



Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

Question 5 What does the method hasNext return
when the list is empty? Why?

Copyright ©2012 by Pearson Education, Inc. All rights reserved



-

uestion 5 What does the method hasNext return
when the list is empty? Why?

False. When the list is empty, both nextPosition
and list.getLength() are zero.

J Copyright ©2012 by Pearson Education, Inc. All rights reserved



A separate
class iterator

An ADT list

Figure 15-5 A separate class iterator with a reference to an ADT,
an indicator of its position within the iteration, and no knowledge

-

\.

’

\.

Tist | @ nextPosition
Ken \
Sue
Tom
It - t " " -
erator cursor pr Jen
Bob /

of the ADT’s implementation

Copyright ©2012 by Pearson Education, Inc. All rights reserved




Ay LT N

-

7
B

-

Question 6 The work performed by the method next
depends upon the implementation of the ADT list that is
ultimately used. For which implementation of the list, array-

based or linked, will next use the most execution time?
Why?



4

/‘
/

Question 6 The work performed by the method next
depends upon the implementation of the ADT list that is
ultimately used. For which implementation of the list, array-
based or linked, will next use the most execution time?
Why?

Linked. The particular implementation of the list affects the
amount of work that the method getEntry must perform.
For an array-based implementation, getEntry accesses the
required entry directly and immediately. For a linked
implementation, getEntry must traverse a chain of nodes
to find the desired entry. This takes more time to
accomplish than accessing an array entry.

Copyright ©2012 by Pearson Education, Inc. All rights reserved




(a) Before next ()

Ashley
Brett
Chris
Dan
Emily

nextPosition

Iterator cursor p»

Figure 15-6 A list and nextPosition
(a) just before the call to next;

Copyright ©2012 by Pearson Education, Inc. All rights reserved



(b) After next () returns Chris

Ashley
Brett
Chris
Dan
Emily

nextPosition

Iterator cursor p

Figure 15-6 A list and nextPosition (b) just after the call to
next but before the call to remove

Copyright ©2012 by Pearson Education, Inc. All rights reserved




(c) After remove () removes Chris

Ashley
Brett
Dan
Emily

Iterator cursor p

2

nextPosition

Figure 15-6 A list and nextPosition
(c) after the call to remove

Copyright ©2012 by Pearson Education, Inc. All rights reserved



ALl lo-_ T

Linked Implementation

* Define the methods specified In
Iterator within new inner class

4 = A class that implements the ADT list
- » Needs another method that client can use to
create an iterator

) “ 4".
P
.I ';:3“7-:%

Iterator<T> getlterator()

IteratorForLinkedList():




g =N S N

-

Linked Implementation

* New Interface needed
Listing 15-3

LISTING 15-3  The interface ListWithIteratorInterface

import java.util.Iterator;
public interface ListWithIteratorInterface<T> extends ListInterface<T>

{
public Iterator<T> getIterator();

}

e Listing 15-4, an outline of the class
LinkedlListWithIterator

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

An inner class nextNode | @

iterator
4 N\
An ADT list *— Ken Sue Tom Jen Bob| e ]
A
Iterator cursor
1\ J

Figure 15-7 An inner class iterator with direct access to the
linked chain that implements the ADT

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Al e T N ;'.

-

Question 7 What does the method hasNext return when the list
is empty? Why?

Question 8 Given the class LinkedListWithlterator, what Java
statements create the iterators namelterator and
countinglterator mentioned in Segment 15.117



w
=

» r‘ X
24

s

cam TN - - ‘éz_
X _._"‘:.T;\. . ‘

Question 7 What does the method hasNext return when the list
is empty? Why?

False. When the list is empty, firstNode, and therefore nextNode , is null.

Question 8 Given the class LinkedListWithlterator, what Java
statements create the iterators namelterator and
countinglterator mentioned in Segment 15.117

Create the iterators by writing
lterator<String> namelterator = namelList.getlterator();
lterator<String> countinglterator = namelList.getlterator();

Copyright ©2012 by Pearson Education, Inc. All rights reserved



A

-

ATl e T : ;".

Array-Based Implementation

* [terator will support the remove method
» Adaptation of Alist class, Chapter 13
* Listing 15-5

= Implements interface
ListWithIteratorInterface

= Also includes method getIterator

= Contains the inner class
IteratorForArrayList, implements

Interface Iterator.

~


Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

s

(a) Before next () (b) After next () returns Chris (c) After remove () removes Chris
Art Art Art
Bart Bart Bart
Iterator cursor pr Iterator cursor p»
nextIndex=2 | Chris Chris nextIndex=2 | Deb
Tterator cursor
Deb nextIndex=3 | Deb Elly
Elly Elly

FIGURE 15-8 The array of list entries and nextIndex (a) just
before the call to next; (b) just after the call to next but before
the call to remove; (c) after the call to remove

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Question 10 Consider the list and the calls to next and remove in Figure 15-8.
a. What would a call to next return if it occurred after the call to remove in
Figure 15-8c?

b. What would a call to next return if it occurred after the call to next in
Figure 15-8b?

Question 11 What changes would be necessary to the methods in the inner class
IteratorForArrayList if its constructor set nextindex to - 1 instead of 0?




-

Question 10 Consider the list and the calls to next and remove in Figure 15-8.
a. What would a call to next return if it occurred after the call to remove in
Figure 15-8c?

a. Deb.
b. What would a call to next return if it occurred after the call to next in
Figure 15-8b?

a. Deb.

Question 11 What changes would be necessary to the methods in the inner class
IteratorForArrayList if its constructor set nextindex to - 1 instead of 0?

Originally, nextindex is the index of the next entry that next will return. The
change makes nextindex the index of the last entry that next returned. Thus,
the following changes are needed:

® hasNext should compare nextindex to numberOfEntries - 1 instead of
numberOfEntries

e next should increment nextindex before accessing list[nextindex]

e remove should remove the entry at nextindex + 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved




P 7 B RS ;".

Why Are Iterator I\/Iethods IN
Their Own Class?

* Inner class iterators have direct access to
structure containing ADT's data

» Execute faster than separate class
iterators

.t \
™7
&' ‘

g8 ° Consider Listing 15-6
= Modified linked implementation
= Differences with Listing 15-4 highlighted


Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

N

P L 0 I ,-.

Why Are Iterator Methods in =
Their Own Class?

 Consider this traversal

myList.resetTraversal();
Z (myList.hasNext())
— System.out.printin(myList.next());

“¢ + Quick traversal, but ...

~ = Only one traversal can be in progress at a
time

= Resulting ADT has too many operations



Question 13 Suppose that you want to omit the method resetTraversal.
a. Could the default constructor initialize nextNode to firstNode? Explain.

b. Could the add methods initialize nextNode to firstNode? Explain.

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Question 13 Suppose that you want to omit the method resetTraversal.
a. Could the default constructor initialize nextNode to firstNode? Explain.

No. The default constructor creates an empty list. If it set nextNode to firstNode,
nextNode would be set to null.

b. Could the add methods initialize nextNode to firstNode? Explain.

Yes, but with a disadvantage. Each addition to the list would set nextNode to
firstNode. After creating a list, you could traverse it. However, the only way you

could reset the traversal to the list’s beginning would be to add another entry
to the list.

Copyright ©2012 by Pearson Education, Inc. All rights reserved




The Interface ListIterator

A second interface for iterators
= Listing 15-7
e Extends Iterator

» Includes methods hasNext, next, and
remove

7
B

=


Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

A

ATl e T

The Interface ListIterator

 Methods remove, add, and set are
optional
= Can choose not to provide

= Must have an implementation that throws

exception
UnsupportedOperationException




(a) Before previous ()

Jamie
Joey
Rachel
Monica
Ross

[terator cursor P>

Figure 15-9 The effect of a call to previous on a list

(b) After previous () returns Joey

Iterator cursor p»

Jamie
Joey
Rachel
Monica
Ross

Copyright ©2012 by Pearson Education, Inc. All rights reserved




Jamie

Joey previousIndex() returns the index of Joey
[terator cursor p Rachel nextIndex () returns the index of Rachel

Monica

Ross

Figure 15-10 The indices returned by the methods nextIndex
and previousIndex

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Wi

Using Interface ListIterator

~

Given

Interface ListIterator Implemented as
Inner class of class that implements ADT list.

Iterator includes the operations add, remove,
and set.

Method getIterator is added to ADT list.
List namelList contains: Jess, Jim, Josh

Iterator traverse Is defined
ListIterator<String> traverse =
namelist.getIterator() ;



Using Interface ListIterato

SR . T ﬁ
R D

<

e Statements

System

o System
g System
- System

out.printin("nextIndex
.out.printin("hasNext
out.printin("previousIndex
.out.printin("hasPrevious

traverse.nextIndex());
traverse.hasNext());
traverse.previousIndex());
traverse.hasPrevious());

+ + + +

~& + Produce output

L

nextIndex 0
hasNext true
previousIndex -1
hasPrevious false

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Al le- T N ' ﬁ

Using Interface ListIterator‘ |

 Then, statements

+ traverse.next());
+ traverse.nextIndex()):
+ traverse.hasNext()):

System.out.printlin("next
System.out.printin("nextIndex
System.out.printin("hasNext

* Produce output

next Jess
nextIndex 1
hasNext true

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Using Interface ListIterator~

com TN

* Finally, statements

System
System
System
System
System

.out
.out
.out
.out
.out
System.

out

.printin("previousIndex " + traverse
.printin("hasPrevious " + traverse
.printin("previous " + traverse
.printin("nextIndex " + traverse
.printin("hasNext " + traverse
.printin("next " + traverse

* Produce output

previousIndex 0
hasPrevious true

previous Jess
nextIndex 0

hasNext true
next Jess

N

<
X
Patd

(Y

L

.previousIndex());
.hasPrevious());
.previous());
.hextIndex());
.hasNext());
.next());

Copyright ©2012 by Pearson Education, Inc. All rights reserved



- N

Question 15 If the iterator’s position is between the first two entries of the
previous list, write Java statements that replace Josh with Jon.

Question 16 If the iterator’s position is between Ashley and Jim,
write Java statements that add Miguel right after Jim.

J Copyright ©2012 by Pearson Education, Inc. All rights reserved



“~ 3 -
- |

Question 15 If the iterator’s position is between the first two entries of the
previous list, write Java statements that replace Josh with Jon.

traverse.next(); // return Jim
traverse.next(); // return Josh
traverse.set("Jon"); // replace Josh

Question 16 If the iterator’s position is between Ashley and Jim,
write Java statements that add Miguel right after Jim.

traverse.next(); // return Jim
traverse.add("Miguel"); // add Miguel after Jim

J Copyright ©2012 by Pearson Education, Inc. All rights reserved



ATl e T

-
Array-Based Implementation of
Interface ListIterator

 The Interface
ListWithlListIteratorInterface

 Listing 15-8

import java.util.ListIterator;
public interface ListWithListIteratorInterface<T> extends

ListInterface<T>

{
public ListIterator<T> getIterator();
}



aaraae (...

Array-Based Implementatlon of
Interface ListIterator

* The class that implements the ADT list
Listing 15-9
q * Class ArrayListWithListIterator
- Listing 15-10

~. * Consider how remove and set will throw
X IllegalStateException.

= Happens when

* next Or previous was not called, or

« remove Or add has been called since the last call to next or
previous



Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

(a)

traverse.

(b) traverse.

traverse.

traverse

(c) traverse.
traverse.

traverse.

B T N Ll e I N iy W N I R T N N TV N oar

Figure 15-11 Possible contexts in which the method remove of
the iterator traverse throws an exception when called

Neither next nor previous has been called

t1

remove() ; Causes an exception

next();
remove(); ~— Legal
.remove(); -€— (auses an exception
previous();
remove() ; - [egal
remove() ; - (Causes an exception

Copyright ©2012 by Pearson Education, Inc. All rights reserved



ST R GBS E T TEROVEY T g U S AT X CE PO T

(d) traverse.next();
traverse.add(...);

traverse.remove(); ~€— (auses an exception

(e) traverse.previous();

traverse.add(...);

traverse.remove(); ~%— (Causes an exception

Figure 15-11 Possible contexts in which the method remove of
the iterator traverse throws an exception when called

Copyright ©2012 by Pearson Education, Inc. All rights reserved



Y

(a) Before add is called

Art

Bart
[terator cursor

nextIndex =2 | Chris

Deb

Elly

(b) After add("Ben") is called

[terator cursor p
nextIndex =3

Art

Bart

Ben e Added entry

Chris

Deb

Elly

Figure 15-12 The array of list entries and nextIndex (a) just
before the call to add; (b) just after the call to add

Copyright ©2012 by Pearson Education, Inc. All rights reserved



v

\ M
.\ /.

7§
2

s

(a) Before previous()

Art

Bart
[terator cursor p

nextIndex =2 | Chris

Deb

Elly

Figure 15-13 The array of list entries and nextIndex (a) just
before the call to previous; (b) just after the call to previous
but before the call to remove; (c) after the call to remove

(b) previous () returns Bart

Iterator cursor p
nextIndex =1

Art

Bart

Chris

Deb

Elly

> . ™,

Iterator cursor
nextIndex =1

(c) remove () removes Bart

Art

Chris

Deb

Elly

Copyright ©2012 by Pearson Education, Inc. All rights reserved




LR

Java Class Library-:q The
Interface Iterable

 Listing 15-11

LISTING 15-10 The interface java.lang.Iterable

package java.lang;
public interface Iterable<T>

{

Iterator<T> iterator()

}

Copyright ©2012 by Pearson Education, Inc. All rights reserved




L — A0
<

Java Class Library: The
Interface Iterable

 Listing 15-12

vd LISTING 15-11 The interface ListWithIteratorInterface modified to extend
E Iterable

Eil'" import java.util.Iterator;

public interface ListWithIteratorInterface<T> extends ListInterface<T>,

-7 Iterable<T>
2V4 {
"‘ public Iterator<T> getIterator();

- }

Copyright ©2012 by Pearson Education, Inc. All rights reserved



S
Iterable and for-each Loops

L

« Can use a for-each loop to traverse
« Given

ListWithIteratorInterface<String> namelist =
new LinkedListWithIterator<String>();
namelList.add("Joe");
namelList.add("Jess");
namelList.add("Josh");
namelList.add("Jen");

e Then

for (String name : namelist) |
System.out.print(name + " ");
System.out.printin();

Copyright ©2012 by Pearson Education, Inc. All rights reserved



End

Chapter 15

THIRD EDITION

Data Structures
and Abstractions

with b
Java FRANK M. CARRANO
L

Copyright ©2012 by Pearson Education, Inc. All rights reserved



