
Iterators

Chapter 15

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• What Is an Iterator?

• The Interface Iterator

 Using the Interface Iterator

• A Separate Class Iterator

• An Inner Class Iterator

 A Linked Implementation

 An Array-Based Implementation

• Why Are Iterator Methods in Their Own

Class?
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• The Interface ListIterator

 Using the Interface ListIterator

• An Array-Based Implementation of the
Interface ListIterator

 The Inner Class

• Java Class Library: The Interface
Iterable

 Iterable and for-each Loops

 The Interface List Revisited

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe concept of iterator

• Use iterator to traverse, manipulate a list

• Implement in Java separate class iterator,

inner class iterator for list

• Describe pros and cons of separate class

iterators, inner class iterators

Copyright ©2012 by Pearson Education, Inc. All rights reserved

What Is an Iterator?

• Program component

 Enables you to step through, or

 Traverse, a collection of data

• During a traversal

 Each data item considered once

• When we write loops

 They traverse, iterate through whole list

• Consider interface Iterator, Listing 15-1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

Figure 15-1 The effect of a call to next on a list iterator

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using the Interface Iterator

• Implement iterator methods within their

own class

 Can be private, separate from ADT class

 Or private, inner class of ADT

• Consider list of strings
ListInterface<String> nameList = new

 LList<String>();

nameList.add("Jamie");

nameList.add("Joey");

nameList.add("Rachel");

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using the Interface Iterator

• Create an instance of SeparateIterator

Iterator<String> nameIterator = new

SeparateIterator<String>(nameList);

• Connects the iterator
nameIterator to the list nameList

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-2 The effect of the iterator methods
hasNext and next on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-2 The effect of the iterator methods
hasNext and next on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-3 The effect of the iterator methods

next and remove on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-3 The effect of the iterator methods

next and remove on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Assume that nameList contains the names Jamie, Joey, and Rachel, as
it does in Segment 15.6. What output is produced by the following Java
statements?
 Iterator<String> nameIterator = new SeparateIterator<String>(nameList);
 nameIterator.next();
 nameIterator.next();
 nameIterator.remove();
 System.out.println(nameIterator.hasNext());
 System.out.println(nameIterator.next());

Question 2 Assume that nameList is an instance of a class that implements
ListInterface, and nameIterator is defined as in the previous question. If nameList
contains at least three strings, write Java statements that display the list’s third
entry.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Assume that nameList contains the names Jamie, Joey, and Rachel, as
it does in Segment 15.6. What output is produced by the following Java
statements?
 Iterator<String> nameIterator = new SeparateIterator<String>(nameList);
 nameIterator.next();
 nameIterator.next();
 nameIterator.remove();
 System.out.println(nameIterator.hasNext());
 System.out.println(nameIterator.next());

Question 2 Assume that nameList is an instance of a class that implements
ListInterface, and nameIterator is defined as in the previous question. If nameList
contains at least three strings, write Java statements that display the list’s third
entry.

true
Rachel

nameIterator.next();
nameIterator.next();
System.out.println(nameIterator.next());

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 Given nameList and nameIterator as described in the previous
question, write statements that display the even-numbered entries in the list. That
is, display the second entry, the fourth entry, and so on.

Question 4 Given nameList and nameIterator as described in Question 2, write
statements that remove all entries from the list.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 Given nameList and nameIterator as described in the previous
question, write statements that display the even-numbered entries in the list. That
is, display the second entry, the fourth entry, and so on.

Question 4 Given nameList and nameIterator as described in Question 2, write
statements that remove all entries from the list.

nameIterator.next(); // skip first entry; list has > 1 entry
while (nameIterator.hasNext())
{ System.out.println(nameIterator.next()); // display even-numbered entry
 if (nameIterator.hasNext())
 nameIterator.next(); // skip odd-numbered entry
}

while (nameIterator.hasNext())
{ nameIterator.next();
 nameIterator.remove();
}

Multiple Iterators

• Possible to have multiple iterators of the

same list in progress simultaneously

• View code which counts number of times

that Jane appears in a list of names

Listing 15-A

• Output of Listing 15-A

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-4 Counting the number of times that

Jane appears in a list of names

A Separate Class Iterator

• Implementation of class
SeparateIterator

 Implements the interface
java.util.Iterator

• View source code, Listing 15-2

• Note: definition of SeparateIterator

independent of a particular implementation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 5 What does the method hasNext return
when the list is empty? Why?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 5 What does the method hasNext return
when the list is empty? Why?

False. When the list is empty, both nextPosition
and list.getLength() are zero.

Figure 15-5 A separate class iterator with a reference to an ADT,

an indicator of its position within the iteration, and no knowledge

of the ADT’s implementation
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 6 The work performed by the method next
depends upon the implementation of the ADT list that is
ultimately used. For which implementation of the list, array-
based or linked, will next use the most execution time?
Why?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 6 The work performed by the method next
depends upon the implementation of the ADT list that is
ultimately used. For which implementation of the list, array-
based or linked, will next use the most execution time?
Why?

Linked. The particular implementation of the list affects the
amount of work that the method getEntry must perform.
For an array-based implementation, getEntry accesses the
required entry directly and immediately. For a linked
implementation, getEntry must traverse a chain of nodes
to find the desired entry. This takes more time to
accomplish than accessing an array entry.

Figure 15-6 A list and nextPosition

(a) just before the call to next;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-6 A list and nextPosition (b) just after the call to

next but before the call to remove

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-6 A list and nextPosition

(c) after the call to remove

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Linked Implementation

• Define the methods specified in
Iterator within new inner class

 A class that implements the ADT list

 Needs another method that client can use to

create an iterator

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Linked Implementation

• New interface needed

Listing 15-3

• Listing 15-4, an outline of the class
LinkedListWithIterator

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

Figure 15-7 An inner class iterator with direct access to the

linked chain that implements the ADT

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 7 What does the method hasNext return when the list
is empty? Why?

Question 8 Given the class LinkedListWithIterator, what Java
statements create the iterators nameIterator and
countingIterator mentioned in Segment 15.11?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 7 What does the method hasNext return when the list
is empty? Why?

Question 8 Given the class LinkedListWithIterator, what Java
statements create the iterators nameIterator and
countingIterator mentioned in Segment 15.11?

False. When the list is empty, firstNode, and therefore nextNode , is null.

Create the iterators by writing
 Iterator<String> nameIterator = nameList.getIterator();
 Iterator<String> countingIterator = nameList.getIterator();

Array-Based Implementation

• Iterator will support the remove method

• Adaptation of Alist class, Chapter 13

• Listing 15-5

 Implements interface
ListWithIteratorInterface

 Also includes method getIterator

 Contains the inner class

IteratorForArrayList, implements

interface Iterator.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

FIGURE 15-8 The array of list entries and nextIndex (a) just

before the call to next; (b) just after the call to next but before

the call to remove; (c) after the call to remove
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 10 Consider the list and the calls to next and remove in Figure 15-8.
a. What would a call to next return if it occurred after the call to remove in
Figure 15-8c?

b. What would a call to next return if it occurred after the call to next in
Figure 15-8b?

Question 11 What changes would be necessary to the methods in the inner class
IteratorForArrayList if its constructor set nextIndex to - 1 instead of 0?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 10 Consider the list and the calls to next and remove in Figure 15-8.
a. What would a call to next return if it occurred after the call to remove in
Figure 15-8c?

b. What would a call to next return if it occurred after the call to next in
Figure 15-8b?

Question 11 What changes would be necessary to the methods in the inner class
IteratorForArrayList if its constructor set nextIndex to - 1 instead of 0?

a. Deb.

a. Deb.

Originally, nextIndex is the index of the next entry that next will return. The
change makes nextIndex the index of the last entry that next returned. Thus,
the following changes are needed:
● hasNext should compare nextIndex to numberOfEntries - 1 instead of
numberOfEntries
● next should increment nextIndex before accessing list[nextIndex]
● remove should remove the entry at nextIndex + 1

Why Are Iterator Methods in

Their Own Class?

• Inner class iterators have direct access to

structure containing ADT’s data

• Execute faster than separate class

iterators

• Consider Listing 15-6

 Modified linked implementation

 Differences with Listing 15-4 highlighted

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

Why Are Iterator Methods in

Their Own Class?

• Consider this traversal

• Quick traversal, but …

 Only one traversal can be in progress at a

time

 Resulting ADT has too many operations

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 13 Suppose that you want to omit the method resetTraversal.
a. Could the default constructor initialize nextNode to firstNode? Explain.

b. Could the add methods initialize nextNode to firstNode? Explain.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 13 Suppose that you want to omit the method resetTraversal.
a. Could the default constructor initialize nextNode to firstNode? Explain.

b. Could the add methods initialize nextNode to firstNode? Explain.

No. The default constructor creates an empty list. If it set nextNode to firstNode,
nextNode would be set to null.

Yes, but with a disadvantage. Each addition to the list would set nextNode to
firstNode. After creating a list, you could traverse it. However, the only way you
could reset the traversal to the list’s beginning would be to add another entry
to the list.

The Interface ListIterator

• A second interface for iterators

 Listing 15-7

• Extends Iterator

 Includes methods hasNext, next, and

remove

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

The Interface ListIterator

• Methods remove, add, and set are

optional

 Can choose not to provide

 Must have an implementation that throws

exception
UnsupportedOperationException

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-9 The effect of a call to previous on a list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-10 The indices returned by the methods nextIndex

and previousIndex

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using Interface ListIterator

Given

 Interface ListIterator implemented as

inner class of class that implements ADT list.

 Iterator includes the operations add, remove,

and set.

 Method getIterator is added to ADT list.

 List nameList contains: Jess, Jim, Josh

 Iterator traverse is defined
ListIterator<String> traverse =

 nameList.getIterator();

 Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using Interface ListIterator

• Statements

• Produce output

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using Interface ListIterator

• Then, statements

• Produce output

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using Interface ListIterator

• Finally, statements

• Produce output

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 15 If the iterator’s position is between the first two entries of the
previous list, write Java statements that replace Josh with Jon.

Question 16 If the iterator’s position is between Ashley and Jim,
write Java statements that add Miguel right after Jim.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 15 If the iterator’s position is between the first two entries of the
previous list, write Java statements that replace Josh with Jon.

Question 16 If the iterator’s position is between Ashley and Jim,
write Java statements that add Miguel right after Jim.

traverse.next(); // return Jim
traverse.next(); // return Josh
traverse.set("Jon"); // replace Josh

traverse.next(); // return Jim
traverse.add("Miguel"); // add Miguel after Jim

Array-Based Implementation of
Interface ListIterator

• The interface
ListWithListIteratorInterface

• Listing 15-8

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Array-Based Implementation of
Interface ListIterator

• The class that implements the ADT list

Listing 15-9

• Class ArrayListWithListIterator

Listing 15-10

• Consider how remove and set will throw
IllegalStateException.

 Happens when
• next or previous was not called, or

• remove or add has been called since the last call to next or

previous

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm
Chapter15-code_listings.htm

Figure 15-11 Possible contexts in which the method remove of

the iterator traverse throws an exception when called

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-11 Possible contexts in which the method remove of

the iterator traverse throws an exception when called

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-12 The array of list entries and nextIndex (a) just

before the call to add; (b) just after the call to add

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 15-13 The array of list entries and nextIndex (a) just

before the call to previous; (b) just after the call to previous

but before the call to remove; (c) after the call to remove

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library: The
Interface Iterable

• Listing 15-11

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library: The
Interface Iterable

• Listing 15-12

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Iterable and for-each Loops

• Can use a for-each loop to traverse

• Given

• Then

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 15

Copyright ©2012 by Pearson Education, Inc. All rights reserved

