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Objectives 

• Sort array into ascending order using  

 merge sort 

 quick sort 

 radix sort 

• Assess efficiency of a sort and discuss 

relative efficiencies of various methods 
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Merge Sort 

• Divide array into two halves 

 Sort the two halves 

 Merge them into one sorted array 

• Uses strategy of “divide and conquer” 

 Divide problem up into two or more distinct, 

smaller tasks 

• Good application for recursion 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 9-1 Merging two sorted arrays into one sorted array 
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Figure 9-2 The major steps in a merge sort 
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Merge Sort Algorithm 
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Algorithm to Merge 
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Figure 9-3 The effect of the recursive calls and  

the merges during a merge sort 
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Figure 9-4 A worst-case merge of two sorted arrays 
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Efficiency of Merge Sort 

• For n = 2k entries 

 In general k levels of recursive calls are made 

• Each merge requires at most 3n – 1 

comparisons 

• Calls to merge do at most 3n – 22 

operations 

• Can be shown that efficiency is O(n log n) 
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Iterative Merge Sort 

• More difficult than recursive version 

 Recursion controls merging process 

 Iteration would require separate control 

• Iterative more efficient in time, space 

required 

 More difficult to code correctly 
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Merge Sort in the Java Class 

Library 
• Class Arrays in java.util has sort 

methods 
 public static void sort(Object[] a) 

 public static void sort 

(Object[] a, int first, int after) 

• These methods use merge sort 

 Merge step skipped if none of entries in left 

half, greater than entries in right half 
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Quick Sort 

• Like merge sort, divides arrays into two 

portions 

 Unlike merge sort, portions not necessarily 

halves of the array 

• One entry called the “pivot” 
 Pivot in position that it will occupy in final sorted array 

 Entries in positions before pivot less than or equal to 

the pivot 

 Entries in positions after pivot are greater than or 

equal to the pivot 
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Algorithm 

Figure 9-5 A partition of an array during a quick sort 
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Efficiency of Quick Sort 

• For n items 

 n comparisons to find pivot 

• If every choice of pivot cause equal sized 

arrays, recursive calls halve the array 

• Results in O(n log n) 

 

• This we conclude before we develop 

strategy 
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Figure 9-6 A partitioning strategy for quick sort 
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Figure 9-6 A partitioning strategy for quick sort 
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Figure 9-7 Median-of-three pivot selection: (a) The original array; 

 (b) the array with its first, middle, and last entries sorted 
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Figure 9-8 (a) The array with its first, middle, and last entries sorted; 

(b) the array after positioning the pivot and just before partitioning 
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Java Code for Quick Sort 

• Pivot selection code, Listing 9-B 

• Partitioning code, Listing 9-C 

• QuickSort code, Listing 9-D 

• Java Class Library – Class Arrays uses 

quick sort for primitive types 
 public static void sort(type[] a) 

 public static void sort 

(type[] a, int first, int after) 
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Radix Sort 

• Previously seen sorts on objects that can 

be compared 

• Radix sort does not use comparison 

 Looks for matches in certain categories 

 Places items in “buckets” 

• Origin is from punched card sorting 

machines 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 9-9 Radix sort: (a) Original array and buckets  

after first distribution; 
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Figure 9-9 Radix sort: (b) reordered array and buckets  

after second distribution; 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 9-9 Radix sort: (c) reordered array and buckets  

after third distribution; (d) sorted array 
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Radix Pseudocode 
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Figure 9-10 The time efficiency of various sorting algorithms, 

expressed in Big Oh notation 
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Figure 9-11 A comparison of growth-rate functions as n 

increases 
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