
Faster Sorting Methods

Chapter 9

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Merge Sort

 Merging Arrays

 Recursive Merge Sort

 The Efficiency of Merge Sort

 Iterative Merge Sort

 Merge Sort in the Java Class Library

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Quick Sort

 The Efficiency of Quick Sort

 Creating the Partition

 Java Code for Quick Sort

 Quick Sort in the Java Class Library

• Radix Sort

 Pseudocode for Radix Sort

 The Efficiency of Radix Sort

• Comparing the Algorithms
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Sort array into ascending order using

 merge sort

 quick sort

 radix sort

• Assess efficiency of a sort and discuss

relative efficiencies of various methods

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Merge Sort

• Divide array into two halves

 Sort the two halves

 Merge them into one sorted array

• Uses strategy of “divide and conquer”

 Divide problem up into two or more distinct,

smaller tasks

• Good application for recursion

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-1 Merging two sorted arrays into one sorted array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-2 The major steps in a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Merge Sort Algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm to Merge

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-3 The effect of the recursive calls and

the merges during a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-4 A worst-case merge of two sorted arrays

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency of Merge Sort

• For n = 2k entries

 In general k levels of recursive calls are made

• Each merge requires at most 3n – 1

comparisons

• Calls to merge do at most 3n – 22

operations

• Can be shown that efficiency is O(n log n)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Iterative Merge Sort

• More difficult than recursive version

 Recursion controls merging process

 Iteration would require separate control

• Iterative more efficient in time, space

required

 More difficult to code correctly

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Merge Sort in the Java Class

Library
• Class Arrays in java.util has sort

methods
 public static void sort(Object[] a)

 public static void sort

(Object[] a, int first, int after)

• These methods use merge sort

 Merge step skipped if none of entries in left

half, greater than entries in right half

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Quick Sort

• Like merge sort, divides arrays into two

portions

 Unlike merge sort, portions not necessarily

halves of the array

• One entry called the “pivot”
 Pivot in position that it will occupy in final sorted array

 Entries in positions before pivot less than or equal to

the pivot

 Entries in positions after pivot are greater than or

equal to the pivot

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm

Figure 9-5 A partition of an array during a quick sort
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency of Quick Sort

• For n items

 n comparisons to find pivot

• If every choice of pivot cause equal sized

arrays, recursive calls halve the array

• Results in O(n log n)

• This we conclude before we develop

strategy

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-6 A partitioning strategy for quick sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-6 A partitioning strategy for quick sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-7 Median-of-three pivot selection: (a) The original array;

 (b) the array with its first, middle, and last entries sorted

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-8 (a) The array with its first, middle, and last entries sorted;

(b) the array after positioning the pivot and just before partitioning

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Code for Quick Sort

• Pivot selection code, Listing 9-B

• Partitioning code, Listing 9-C

• QuickSort code, Listing 9-D

• Java Class Library – Class Arrays uses

quick sort for primitive types
 public static void sort(type[] a)

 public static void sort

(type[] a, int first, int after)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Radix Sort

• Previously seen sorts on objects that can

be compared

• Radix sort does not use comparison

 Looks for matches in certain categories

 Places items in “buckets”

• Origin is from punched card sorting

machines

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-9 Radix sort: (a) Original array and buckets

after first distribution;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-9 Radix sort: (b) reordered array and buckets

after second distribution;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-9 Radix sort: (c) reordered array and buckets

after third distribution; (d) sorted array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Radix Pseudocode

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-10 The time efficiency of various sorting algorithms,

expressed in Big Oh notation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-11 A comparison of growth-rate functions as n

increases

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 9

Copyright ©2012 by Pearson Education, Inc. All rights reserved

