Faster Sorting Methods

Chapter 9

TTTTTTTTTTTT

Data Structures
and Abstractions

with e
Java FRANK M. CARRANO
R RN e

Copyright ©2012 by Pearson Education, Inc. All rights reserved

- £~
n :M:J _—
L (¢

Contents

* Merge Sort
= Merging Arrays

= = Recursive Merge Sort
— = The Efficiency of Merge Sort
= = |terative Merge Sort
r‘:‘ = Merge Sort in the Java Class Library

ATl e T

Contents

* Quick Sort

= The Efficiency of Quick Sort

= Creating the Partition

= Java Code for Quick Sort

= Quick Sort in the Java Class Library
A‘ Radix Sort
= = Pseudocode for Radix Sort

= The Efficiency of Radix Sort

« Comparing the Algorithms

"
5:_.'

ATl e T

Objectives

« Sort array into ascending order using
= merge sort
= quick sort
= radix sort

4
s:,‘:

- » Assess efficiency of a sort and discuss
-« relative efficiencies of various methods

/Py

Merge Sort

* Divide array into two halves
= Sort the two halves
= Merge them into one sorted array

| » Uses strategy of “divide and conquer”

. il

= Divide problem up into two or more distinct,
smaller tasks

* Good application for recursion

First array Second array

31517 9 01214 6
3 = (), so copy 0 to new array K—y 0
31517 9 01214 6 2
3 > 2,so copy 2 to new array \‘-—-"J
—»| 3
3|57 9 01214 6 .
3 < 4,50 copy 3 to new array / New merged array
5
31517 9 O12 |46
5 > 4,s0 copy 4 to new array 6
o
31517109 0l2]41]6 7
5 < 6,50 copy 5 to new array 9
3151719 01214 6
7 > 6,80 copy 6 to new array
-
315171] 9 D214 6

The entire second array has been copied to the new array
Copy the rest of the first array to the new array

Figure 9-1 Merging two sorted arrays into one sorted array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

5 I 9 3 I 6 0 I 2 4 Divide the array into two halves
3 1 4 5 6 7
|
5 I 7 0 I 0 2 I 4 6 Sort the two halves

'\,_ 4___.———) Merge the sorted halves into

| another arr ay

Copy the merged array back into
the original array

B9 | e 10

=

) | e)
o | ——]
B —
=] | —)

Figure 9-2 The major steps in a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm mergeSort(a, tempArray, first, last)
// Sorts the array entries a[first] through a[last] recursively.

if (first < last)

{

mid = (first + last) /2

mergeSort(a, tempArray, first, mid)

mergeSort(a, tempArray, mid+ 1, last)

Merge the sorted halves a[first..mid] and a[mid + 1. .last] using the array tempArray
}

Merge Sort Algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm to Merge

Algorithm merge(a, tempArray, first, mid, last)
// Merges the adjacent subarrays a[first. .mid] and a[mid + 1. .Tast].

beginHalfl = first
endHalfl = mid
beginHalf2 = mid + 1
endHalf2 = last

// While both subarrays are not empty, compare an entry in one subarray with
// an entry in the other, then copy the smaller item into the temporary array
index = 0 // next available location in tempArray

while ((beginHalfl <= endHalf1l) and (beginHalf2 <= endHalf2))

{
if (a[beginHalfl] <= a[beginHalf2])
{
tempArray[index] = a[beginHalf1]
beginHalfl++
}
else
{
tempArray[index] = a[beginHalf2]
beginHalf2++
}
index++
}

// Assertion: One subarray has been completely copied to tempArray.

Copy remaining enftries from other subarray fo tempArray
Copy entries from tempArray fo array a

Copyright ©2012 by Pearson Education, Inc. All rights reserved

e =l n

7 5 9 3 (i) 0 2 4
1 11
7 5 9 3 §] 0 2 4 Effect of
: | recursive
z o6 Iﬁ 19 calls to
7 5 9 3 6 0 2 4 mergeSort
3 4 7 8 13 14 17 18
7 5 9 3 6 0 2 4 ||
[| | | 1 | _
“ 5 oy 15¥ 0¥
E 5 7 3 9 0 6 2 4
| |
< Yo Y20
s 3 5 7 | 9 0 > | 4 6 ~ Merge steps
- ‘-" 1 |
. e * 21
Vi i

Copy to
original array

s

O | —y =
0 | e 3
FURy S T
O |] &
~ | ——]
O | -e— 'O

Figure 9-3 The effect of the recursive calls and
the merges during a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(Question 1 Trace the steps that a merge sort takes when sorting the following array into
ascending order: 9 6 2 4 8 7 5 3.

&8 753

a 7

g8 7

7 8 35

357 8
234567 89

24
24

™
T
-
]
-t
L
=
M

First array Second array

| 2| 6 4 | 8

s
™,
™,

ay byiac 4d .)
>l 4T 6138 c.6 < 8,50 copy 6 to new array

New merged array d. Copy 8 to new array

a.2 < 4,80 copy 2 to new array

b.6 >4, so copy 4 to new array

Figure 9-4 A worst-case merge of two sorted arrays

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Wi

Efficiency of Merge Sort

For n = 2K entries
= In general k levels of recursive calls are made

Each merge requires at most 3n — 1
comparisons

Calls to merge do at most 3n — 22
operations

Can be shown that efficiency is O(n log n)

/Py

. il

L~
VA
.
v~
v“'
.

ATl e T

lterative Merge Sort

* More difficult than recursive version
= Recursion controls merging process
= |teration would require separate control
* |terative more efficient in time, space
required
= More difficult to code correctly

Merge Sort in the Java Class
Library

 Class Arrays IN java.util has sort

methods
» public static void sort(Object[] a)

"

* public static void sort
(Object[] a, int first, int after)

~= + These methods use merge sort

{ - Merge step skipped if none of entries in left
half, greater than entries in right half

<
—

o —
=

Question 2 Modify the merge sort algorithm given in Segment 9.3 so that it skips any
unnecessary merges, as just described.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

3. Algorifftm mergeSort{a, tempArray, first, last)
if (first = last)
1
mid = (first + last) /2
mergesort(a, first, mid)
mergesort(a, mid4+ 1, last)
if Carray[mid] = array[mid + 1]0)

Merge the sorted halves a[first. . .mid] and a[midsl. Tast] using the array temphrray

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Wi

. .';
[

Quick Sort

» Like merge sort, divides arrays into two
portions

= Unlike merge sort, portions not necessarily
halves of the array

* One entry called the “pivot”
= Pivot in position that it will occupy In final sorted array
= Entries in positions before pivot less than or equal to
the pivot
= Entries in positions after pivot are greater than or
equal to the pivot

Algorithm

Algorithm quickSort(a, first, last)

if (first < last)

{
Choose a pivot
Partition the array about the pivot
pivotIndex = index of pivot
quickSort(a, first, pivotIndex - 1) // sort Smaller
quickSort(a, pivotIndex +1, last) //sortLarger
}
= pivot pivot | = pivot
| | |
Smaller Larger

Figure 9-5 A partition of an array during a quick sort
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Wi

Efficiency of Quick Sort

For n items
= N comparisons to find pivot

If every choice of pivot cause equal sized
arrays, recursive calls halve the array

Results in O(n log n)

This we conclude before we develop
strategy

(a) 3 5 0 4 6 1 2 4

1 3 4 5 6 7
Pivot
(b) Jp— —
indexFromLeft |1 3 5 0 4 6 1 2 4 6 | indexFromRight
3 4 5 6 7
(c)
indexFromLeft |1 3 2 0 4 6 1 5 4 6 | indexFromRight
0 1 3 4 5 6 7
(d) 4 A
indexFromLeft |3 3 2 0 4 6 1 5 4 5|indexFromRight
0 1 2 4 5 6 7

Figure 9-6 A partitioning strategy for quick sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(e)
indexFromLeft |3 3 2 0 1 6 4 5 4 5| indexFromRight
0 1 2 3 5 6 7
()
indexFromLeft |4 3 2 0 1 6 4 5 4 3 | indexFromRight
0 1 2 3 4 5 6 7
o X
(2) 3 2 0 1 6 4 5 4
0 1 2 3 4 5 6 7
(h) 3 2 0 1 4 4 5 6
| 0 1 2 3 | 1 | 5 3 7 |
I I
Smaller Pivot Larger

Figure 9-6 A partitioning strategy for quick sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

s

.
> >

@ s | s | 6] 4] 9] 3 7 1 2 |
2T sTeJTaTsTs T 7] 1] 9]
Pivot

Figure 9-7 Median-of-three pivot selection: (a) The original array;
(b) the array with its first, middle, and last entries sorted

Copyright ©2012 by Pearson Education, Inc. All rights reserved

>

@ 2] 8] 6] 4| s | 3| 7 | 9 |

o
B (b 2 8 6 4 | 3 7 5 9

—: Pivot
— indexFromLeft indexFromRight

Svi
e

Figure 9-8 (a) The array with its first, middle, and last entries sorted,;
(b) the array after positioning the pivot and just before partitioning

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Code for Quick Sort

* Pjvot selection code, Listing 9-B
 Partitioning code, Listing 9-C

Z * QuickSort code, Listing 9-D
. » Java Class Library — Class Arrays uses

qUiCk sSort for F Note: Code listing files

must be in same folder
» public stati as PowerPointfiles e[] a)

; . for links to work
* public static—vasa—oo=—~

(type[] a, int first, int after)

\? !
E{:‘E

=

7
B

-,

Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm

Question 3 Trace the steps that the method quickSort takes when sorting the following
array into ascending order: 9 6 2 4 8 7 5 3. Assume that MIN_SIZEis 4.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

- N\
3. quicksortiarray, O, 7
partitionfarray, O, /)
96 24 87 53
362487509
36258749
32658749
3245876209
quick>ortlarray, 0O, 1)
insertionsortlarray, O, 1)
234587609
quicksortlarray, 3, 7)
partitionfarray, 3, 7J
234587609
23458679
23456879

234567 89
quickSortlarray, 3, 4)
insertionsortlarray, 3, 4)
234567 89
quicksortlarray, &, /)
insertionsortiarray, ©, 7)
234567 89

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ATl e T

Radix Sort

* Previously seen sorts on objects that can
be compared
» Radix sort does not use comparison

= Looks for matches in certain categories
= Places items in “buckets”

"
5:_.'

% * Origin is from punched card sorting
- machines

(a) | 123 | 398 | 210 | 019 | 528 | 003 | 513 | 129 | 220 | 294 | Unsorted array

Distribute integers into buckets according to the rightmost digit

210220 123003 513 || 294]
0 1 2 3 4 Buckets
398 528 019 129
5 6 7 8 9 -

Figure 9-9 Radix sort: (a) Original array and buckets
after first distribution;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(b) | 210 | 220 | 123 | 003 | 513 | 294 | 398 | 528 | 019 | 129

Distribute integers into buckets according to the middle digit

003 210513 019 | 1220 123 528 129
0 1 2 3 4
294 398
5 6 7 8 9

Figure 9-9 Radix sort: (b) reordered array and buckets
after second distribution;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Q™

(c) 1003 | 210 | 513 | 019 | 220 | 123 | 528 | 129 | 294 | 398

Distribute integers into buckets according to the leftmost digit

003 019 123 129 210 220 294 398

0 1 2 3 4
513 528

5 6 7 8 0

(d) 1003 | 019 | 123 | 129 | 210 | 220 | 294 | 398 | 513 | 528

Figure 9-9 Radix sort: (c) reordered array and buckets
after third distribution; (d) sorted array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm radixSort(a, first, last, maxDigits)
// Sorts the array of positive decimal integers a[first..last] into ascending order;
// maxDigits is the number of digits in the longest integer.

for (1 = 0fomaxDigits - 1)

{
Clear bucket[0], bucket[1], ..., bucket[9]
for (index = firstifo last)
{
digit = digit i of alindex]
Place a[index] at end of bucket[digit]
}
Place contents of bucket[0], bucket[1], ..., bucket[9] into the array a

Radix Pseudocode

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(Question 4 Trace the steps that the algorithm radixSort takes when sorting the following
array into ascending order:

6340 1234 291 3 6325 68 5227 1638

4, 6340 1234 0291 0003 6325 0068 5227 1638
0340 0291 0003 1234 6325 5227 0068 1638
0003 6325 5227 1234 1638 6340 0068 0291
0003 0068 5227 1234 0291 6325 6340 1638
0003 0068 0291 1234 1638 3227 6325 6340
0003 0068 0291 1234 1638 3227 6325 6340

AT le-_ T N

(Question 5 One of the difficulties with the radix sort is that the number of buckets depends on
the kind of strings you are sorting. You saw that sorting integers requires 10 buckets;, sorting
words requires at least 26 buckets. If you use radix sort to alphabetize an array of words, what
changes would be necessary to the given algorithm?

= Algorithim radixSort(a, first, last, wordlLength)
S Sorts the array of lowercase words a[first. . last] info ascending order;

S treats each word as if it was padded on the right with blanks to make all words have
S the same length, wordlLength.

for (1 = 1fowordlength)

i
Clegrbucket['a'], bucket['h'], .. ., bucket['z'], bucket[" ']
for (index = firstito last)
{

letter = 1™ letter from the right of a[1ndex]

Flace a[index] at end of bucket[letter]
I

Place contents of bucket['a'], bucket["b"], ..., bucket['z"], bucket[" ']
into the array a

Q™

Average Case Best Case Worst Case
Radix sort O(n) O(n) O(n)
Merge sort O(n log n) O(n log n) O(n log n)
Quick sort O(n log n) O(n log n) O(n%)
Shell sort on') O(n) O(n?) or O(n'?)
Insertion sort o(n?) O(n) o)
Selection sort o(n?) O(n?) o(n?)

Figure 9-10 The time efficiency of various sorting algorithms,
expressed in Big Oh notation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

n

nlog, n

??1.5

10
33
32

10°
9966
31.623

104
132,877
10°
10%

10°
1,660,964
31,622,777
1010

10°
19,931,569
10°

1012

Figure 9-11 A comparison of growth-rate functions as n

Increases

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 9

Copyright ©2012 by Pearson Education, Inc. All rights reserved

