
Faster Sorting Methods

Chapter 9

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Merge Sort

 Merging Arrays

 Recursive Merge Sort

 The Efficiency of Merge Sort

 Iterative Merge Sort

 Merge Sort in the Java Class Library

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Quick Sort

 The Efficiency of Quick Sort

 Creating the Partition

 Java Code for Quick Sort

 Quick Sort in the Java Class Library

• Radix Sort

 Pseudocode for Radix Sort

 The Efficiency of Radix Sort

• Comparing the Algorithms
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Sort array into ascending order using

 merge sort

 quick sort

 radix sort

• Assess efficiency of a sort and discuss

relative efficiencies of various methods

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Merge Sort

• Divide array into two halves

 Sort the two halves

 Merge them into one sorted array

• Uses strategy of “divide and conquer”

 Divide problem up into two or more distinct,

smaller tasks

• Good application for recursion

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-1 Merging two sorted arrays into one sorted array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-2 The major steps in a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Merge Sort Algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm to Merge

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-3 The effect of the recursive calls and

the merges during a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-4 A worst-case merge of two sorted arrays

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency of Merge Sort

• For n = 2k entries

 In general k levels of recursive calls are made

• Each merge requires at most 3n – 1

comparisons

• Calls to merge do at most 3n – 22

operations

• Can be shown that efficiency is O(n log n)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Iterative Merge Sort

• More difficult than recursive version

 Recursion controls merging process

 Iteration would require separate control

• Iterative more efficient in time, space

required

 More difficult to code correctly

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Merge Sort in the Java Class

Library
• Class Arrays in java.util has sort

methods
 public static void sort(Object[] a)

 public static void sort

(Object[] a, int first, int after)

• These methods use merge sort

 Merge step skipped if none of entries in left

half, greater than entries in right half

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Quick Sort

• Like merge sort, divides arrays into two

portions

 Unlike merge sort, portions not necessarily

halves of the array

• One entry called the “pivot”
 Pivot in position that it will occupy in final sorted array

 Entries in positions before pivot less than or equal to

the pivot

 Entries in positions after pivot are greater than or

equal to the pivot

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm

Figure 9-5 A partition of an array during a quick sort
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency of Quick Sort

• For n items

 n comparisons to find pivot

• If every choice of pivot cause equal sized

arrays, recursive calls halve the array

• Results in O(n log n)

• This we conclude before we develop

strategy

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-6 A partitioning strategy for quick sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-6 A partitioning strategy for quick sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-7 Median-of-three pivot selection: (a) The original array;

 (b) the array with its first, middle, and last entries sorted

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-8 (a) The array with its first, middle, and last entries sorted;

(b) the array after positioning the pivot and just before partitioning

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Code for Quick Sort

• Pivot selection code, Listing 9-B

• Partitioning code, Listing 9-C

• QuickSort code, Listing 9-D

• Java Class Library – Class Arrays uses

quick sort for primitive types
 public static void sort(type[] a)

 public static void sort

(type[] a, int first, int after)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm
Chapter09-code_listings.htm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Radix Sort

• Previously seen sorts on objects that can

be compared

• Radix sort does not use comparison

 Looks for matches in certain categories

 Places items in “buckets”

• Origin is from punched card sorting

machines

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-9 Radix sort: (a) Original array and buckets

after first distribution;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-9 Radix sort: (b) reordered array and buckets

after second distribution;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-9 Radix sort: (c) reordered array and buckets

after third distribution; (d) sorted array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Radix Pseudocode

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-10 The time efficiency of various sorting algorithms,

expressed in Big Oh notation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-11 A comparison of growth-rate functions as n

increases

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 9

Copyright ©2012 by Pearson Education, Inc. All rights reserved

