Faster Sorting Methods

Chapter 9

TTTTTTTTTTTT

Data Structures
and Abstractions

with e
Java FRANK M. CARRANO
R RN e

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al e T

MergeSort vs QuickSort

* Two powerful sort algorithms
= MergeSort is used in Arrays.sort(Object [])
ra = QuickSort is used in Arrays.sort(primitive[])
o] - MergeSort Is a stable sort
= petter for sorting objects

Wt QuickSort is not stable but very fast
= petter for sorting primitives

V4
()_

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

i | - Q™

Stabi ity

A typical application. First, sort by name; then sort by section.

Selection.sort(a, new Student.ByName()); Selection.sort(a, new Student.BySection());

Andrews 3 A 664-480-0023 097 Little Furia - A 766-093-9873 101 Brown
Battle 4 C 874-088-1212 121 Whitman Rohde A 232-343-5555 343 Forbes
Chen 3 A 991-878-4944 308 Blair - A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson - A 884-232-5341 11 Dickinson
Furia 1 A 766-093-9873 101 Brown - 3 A 664-480-0023 097 Little
Gazsi 4 B 766-093-9873 101 Brown - 3 B 898-122-9643 22 Brown

Kanaga 3 B 898-122-9643 22 Brown B 766-093-9873 101 Brown
Rohde 2 A 232-343-5555 343 Forbes C 874-088-1212 121 Whitman

@#%&@!

Students in section 3 no longer sorted by name.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

MergeSort vs QuickSort

Execution Speed in Millisecond for 5 Sort Algorithms

SIZE
1000
2000
5000
10000
20000
50000
100000
200000
500000
1000000
2000000
10000000

Selection Insertion Shell
3 13 4
5]]
18 11 13
32 17 17
114 25 18
624 3od 38
2472 1309 21
9619 2221 112
bl668 33090 A41
1076
2268
16979

Merge

3

10
30
70
92
36
148
288
716
1011
9823

Quick

31
41
47

735
148
237
333

2789

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Fon VLR MY

Mergesort: empirical analysis

Running time estimates:
* Home pc executes 10° comparisons/second.
* Supercomputer executes 10'* comparisons/second.

insertion sort (N¢) mergesort (N log N)

home instant 2.8 hours 317 years instant 1 second

super instant 1 second 1 week instant instant

billion

18 min

Iinstant

Bottom line. Good algorithms are better than supercomputers.

Mergesort

Basic plan.
« Divide array into two halves.
« Recursively sort each half.
« Merge two halves.

e M CEE R G E S OR T-E X'A'M P L E
sortlefthaf E E G M O R R S

sort right half A E E E W P = X

mergeresults A E E E E G L M M O P R R S T X

Mergesort overview

First Draft

of a

Report on the
EDVAC

John yvon Neumann

Merging: Java implementation

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)

{

for (int k = lo; k <= hi; k++)
aux[k] = a[k]; copy

int 1= lo, J = mid+l;
for (int k = lo; k <= hi; k++)

{
if (i > mid) alk] = aux[j++]; merge
else if (j > hi) afk] = aux[i++];
else if (lessCaux[j], aux[i])) a[k] = aux[j++];
else alk] = aux[i++];

}

}
lo 1 mid] h1

aux[] A G L 0 R I H I M S T

k
af[] A G H I L M

! “UNYIHIYIIL YLV L VY T TAIDVIIT LLuuLauuvll, 1. Al 11yl 1ToTivou

Mergesort: Java implementation

public class Merge
{
private static void merge(...)
{ /* as before */ }
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
if (hi <= 1o) return;
int mid = loe + (h1 - lo) / 2;
sort{a, aux, lo, mid);
sort(a, aux, mid+l, hi);
merge(a, aux, lo, mid, hi);
}
public static void sort(Comparable[] a)
{
Comparable[] aux = new Comparable[a.length];
sort(a, aux, 0, a.length - 1);
}
}

To i ol hii

14 11 172 13 14 15 16 17 18 19

cam TN ™,

For a trace of MergeSort

* bring up this PPT
= good analysis of Big-O PPT
o
5

Copyright ©2012 by Pearson Education, Inc. All rights reserved

http://tomrebold.com/csis10b/lectures/08L/MergeSort.ppt
http://tomrebold.com/csis10b/lectures/08L/TraceOfMergesort.ppt

- Quicksort t-shirt

?uum&wmmu.mm

ntl, |
charx, y;

| = lody; ght;
x= MMI&

do

i
whvle || &L 6 < ;
, ke U < W) 88§ > 1)
:IH'O
y = domsll.
W-H:
itemlj] = y:
)000;'-;
) while Ul <=

okt <) quicksoetitesss, leht, §.
it {1 < right] guicksonBarma, |, nghy

The Top Ten Algorithms of the 20th Century

Jack Dongarra and Francis Sullivan editors of Computing in Science & Engineering published a list of
“The Top Ten Algorithms of the Century.”

(

-

0.0 N 0O -On

10.

the Monte Carlo method or Metropolis algorithm, devised by John von Neumann, Stanislaw
Ulam, and Nicholas Metropolis;

the simplex method of linear programming, developed by George Dantzig;

the Krylov Subspace Iteration method, developed by Magnus Hestenes, Eduard Stiefel, and
Cornelius Lanczos;

the Householder matrix decomposition, developed by Alston Householder;

the Fortran compiler, developed by a team lead by John Backus;

the QR algorithm for eigenvalue calculation, developed by J Francis;

the Quicksort algorithm, developed by Anthony Hoare;

the Fast Fourier Transform, developed by James Cooley and John Tukey;

the Integer Relation Detection Algorithm, developed by Helaman Ferguson and Rodney
Forcade;

the fast Multipole algorithm, developed by Leslie Greengard and Viadimir Rokhlin;

1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.

Putting N things in numenical or alphabetical order 1s mind-numbingly mundane. The intellectual challenge Lies in devising ways
of doing so quickly. Hoare’s algorithm uses the age-old recursive strategy of divide and conquer to solve the problem: Pick one
element as a “pivot,” separate the rest into piles of “big™ and “small™ elements (as compared with the pivot), and then repeat this
procedure on each pile. Although it's possible to get stuck doang all MN — 1)2 compansons (especially if you use as vour pivot the first
item on a list that’s already sorted!), Quicksort runs on average with ({ N log V) efficiency. Its elegant simplicity has made Quicksort
the pos-terchild of computational complexity.

~ Quicksort

Basic plan.
« Shuffle the array.
- Partition so that, for some j
— entry a[j] is in place
— no larger entry to the left of 5
— no smaller entry to the right of j
« Sort each subarray recursively.

—
m

mput Q@ U I C€C K 5 0O R T E X A M P

shuffle K AT E L E P U I M Q C X 0 5
partitioning item

partiion E C A I E K L P U T M Q R X 0 5
e -~

Hot greater ot less
sortleft A C E E I

sort right L M 0 P Q R S T U X
resut A C E E I K L M O P Q R

Tony Hoare

+ |nvented quicksort to translate Russian into English.
| but couldn’t explain his algorithm or implement it!]

+ Learned Algol 60 (and recursion).

+ Implemented quicksort.

Tony Hoare
1980 Turing Award

LI bt it 1 e R R R 0 e i T e e A

History [edit

The guicksort algorithm was developed in 1960 by Tony Hoare while in the Soviet Union, as a
visiting student at Moscow State University. At that time, Hoare worked in a project on machine
translation for the National Physical Laboratory. He developed the algorithm in order to sort the
words to be translated, to make them more easily matched to an already-sorted Russian-to-English
dictionary that was stored on magnetic tape. [¢

Quicksort gained widespread adoption, appearing, for example, in Unix as the default library sort
function. hence it lent its name to the C standard library function gsort [l and in the reference
implementation of Java. It was analyzed extensively by Robert Sedgewick, who wrote his Ph.D.
thesis about the algorithm and suggested several improvements_ !

o

Q

vicksort: Java code for partitioning

while (less{a[++i]., a[le]))
if (i == hi) break:

while (less(a[lo], a[--371))

if (i == lo) break;

find item on left to swap

find item on right to swap

during v =v |

=V

=

Quicksort: Java implementation

public class Quick

{

private static int partition(Comparable[] a, int lo, int hi)
{ /* see previous slide =/ }

public static void sort(Comparable[] a)

{
StdRandom. shuffle(a):

F 3

sort(a, 0, a.length - 1);
}

private static void sort(Comparable[] a, int lo, int hi)
{

1f (hi1 <= lo) return;

int] = partitien(a, lo, hi);

sort(a, lo, j-1);

sort(a, j+1, hi);

shuffle needed for
performance guarantee
(stay tuned)

a Trace of QuickSort

ﬂor

* bring up this PPT

Copyright ©2012 by Pearson Education, Inc. All rights reserved

http://tomrebold.com/csis10b/lectures/08L/TraceofQuickSortAlgorithm.ppt

ATl e T

Efficiency of Quick Sort

* For n items
= N comparisons to find pivot

* |f every choice of pivot divides evenly
= recursive calls halve the array log n times

~» * Results In O(n log n) — best case

™=
A‘.‘
s
"1
-
|“‘

4
s‘_’,‘:

3

= L“:‘,_________s.a"llIIIlJEIIIllll.izi-‘l__Eﬁﬁlgﬁiill

Sorting summary

IH#HHIIHHHHIII%HIIIHHH%IIHHHIIIIIIIIIHHHHIIIIIII
v 1 N2 LN? KN?

selection N exchanges

use for small N

insertion v v N g N2 Wi
or partially erdered
tight code;
1 « 32
v Nlogs N) cN subquadratic
o LNIgN NlgN Nlig N Nlog N guarantee,
stable
: improves mergesort
timsort v N NlgN NlgN P - y
when preexisting order
v v N NlgN Nlg N holy sorting grail

Copyright ©2012 by Pearson Education, Inc. All rights reserved

INCFFECTIVE SORTS

DEFINE. HALFHEARTED MERGESORT (LisT):
IF LENGT(LIST) < 2:
RETURN LST
PVOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGE S0RT (LIST[: Pivor)
B = HALFHEARTEDMERGE SORT (LisT [PvOT:
A OMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORTLIST):
/f AN OPTMIZED BOGOSORT
/f RUNS N O(N LoGN))
FOR N FROM 1. TO LOG(LENGH(LIST)):
SHUFFLE (LiST):
IF I550RTED (LIST):
REORN LiST
RETURN “KERNEL PRGE FRULT (ERRCR (0DE: 2)°

PErNE JOBINERE UICKSORT (LisT):
OK 50 YU CHOOSE A PVOT
THEN DIVIDE THE LIST IN HALF
FOR EACH HALF:
(CHECE, Th SEE IF [Ts SORED
NO WAIT ITDOESN'T MATIER
COMPRRE EACH ELEMENT To THE PVOT
THE BGGER OMES GO IN ANBJ ST
THE ERWAL ONED GO INTO, UH
THE SELOMD LIST FRoM GERRE
HANG ON, LET ME NAME THE LETS
THS IS LST A
THE NEW OME 15 LIST B
PUTTHE 3G ONES INTD LST B
NOW THKE THE SECOMD LIST
CALL IT [UsT, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH ALL THAT
IT JUST RECURSMELY CAUS MSELF
UNTIL BOTH LISTS ARE EMPTY
RIGHT?
NOT" EMPTY, BUT YoU KNOW WHAT T MEAN
AM L ALLOWED T USE THE STENDARD LIBRARIEST

DEFINE PANICSORT(LisT):
IF [5SORTED (LIST)
REWURN LIST
FOR N FROM 1 To 10000:
PNOT =RANDOM(0, LENGTH(LI1ST))
LisT = UsT [PvoT: 1+ LISTL : PvoT]
IF I550RTED(LIST):
RETURN UST
IF ISGORTED(LST):
RETURN UST:
IF BSORTED(LIST): /THIS CAN'T BE HAPPENING
RETURN LIST
IF ISSORTED (LIST)2 // COME ON COME ON
REURN LIST
/ OH TEEZ
J T GOMMA BE IN 50 MUCH TROUBLE
Lust=L1]
SSTEM (“SHUTDOWN -H +5™)
SYSTEM (“RM -RF /")
SYSTEM (“RM -RF ~/+")
SystEM ("RM -RF /")
SYSTEM("RD /5 /Q C:*") ff PORTRBILITY
RETURN [1,2,3,4,5]

End

Chapter 9

Copyright ©2012 by Pearson Education, Inc. All rights reserved

