Recursion
Chapter 7

YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES

START WHITTLING DICE AND
GET QUT SOME PARCHMENT

FOR CHARACTER SHELTS.
\ HEY, NO RECURSING.

/

Data Structure
and Abstraction
with 4
Java . M T

N TN e

TTTTTTTTTTTT

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ATl e T

Contents

* What Is Recursion?
* Tracing a Recursive Method
= * Recursive Methods That Return a Value
. Recursively Processing an Array

O

~& * Recursively Processing a Linked Chain

~ « The Time Efficiency of Recursive Methods
= The Time Efficiency of countDown

= The Time Efficiency of Computing x"

ATl e T

Contents

* A Simple Solution to a Difficult Problem
* A Poor Solution to a Simple Problem

& . Tail Recursion
* Indirect Recursion

. il

.« * Using a Stack Instead of Recursion

ATl e T

Objectives

* Decide whether given recursive method

will end successfully in finite amount of
time

 Write recursive method
= « Estimate time efficiency of recursive

method

» |dentify tail recursion and replace it with

iteration

ATl e T

What Is Recursion?

* We often solve a problem by breaking it
Into smaller problems

* When the smaller problems are identical
(except for size)

= This is called “recursion”

"

24
. Y ,q

" * Repeated smaller problems
= Until problem with known solution is reached

» Example: Counting down from 10

You count down

al

&l

You count down You count down
from &. from 7.
-
b _3-
. \ /N

Figure 7-1 Counting down from 10

Copyright ©2012 by Pearson Education, Inc. All rights reserved

2]
You count down
from 1.

Several friends later..

Figure 7-1 Counting down from 10

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Several friends later...

Figure 7-1 Counting down from 10

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al el

What Is Recursion

A method that calls itself is
= A recursive method.

=« * The invocation Is

g

~ = A recursive call or
= = Recursive invocation
s?!

W Example:
- public static void countDown(int integer)
= Countdown ¢

System.out.printin(integer) ;
if (integer > 1)
countDown(integer - 1);

Design of Recursive Solution

« What part of solution can contribute directly?

« What smaller (identical) problem has solution
that ...

= \When taken with your contribution
= Provides the solution to the original problem

"

¢ « When does process end?
= \What smaller but identical problem has known
solution

= Have you reached this problem, or base case?

ATl e T

Design Guidelines

* Method must receive input value

* Must contain logic that involves this input
value and leads to different cases

* One or more cases should provide
.. Solution that does not require recursion
"% = Base case or stopping case

e One or more cases must include recursive
Invocation of method

"

Write a recursive void method that skips # lines of output, where 1 iz a posi-
five integer. Use System.out.println() to skip one line.

Describe a recursive algorithm that draws a given number of concentric cir-
cles. The innermost circle should have a given diameter. The diameter of each of the other
circles should be four-thirds the diameter of the circle just inside it.

1. public static void skiplines{int giwvenNumber)

{
1t (giwvenMumber == 1)
{
system.out.printin);
zkiplines(gl venMumber - 1J;
h
h

2 Algorithm dravConcentricCircles(givenNumber, givenDiameter, givenPoint)
if (giwvenNumber == 1)

{
Draw a circle whose diameter 13 givenDiameter and whose centfer iz af givenPoint
giwvenliameter = 4 * givenDiameter / 3
drawConcentriclirc les{givenumber - 1, givenbDiameter, giwvenPoint)

L

Copyright ©2012 by Pearson Education, Inc. All rights reserved

s U, .

Tracing Recursive Method

 Glven recursive countDown method

public static void countDown(int integer)

{
System.out.printin(integer);

/| if (integer > 1)

g countDown(integer - 1);
= }

pile

& * Figure 7-2 The effect of the method call
" countDown (3)

(a) (b) (c)
countDown(3) countDown (2) countDown (1)
Display 3 Display 2 Display 1
Call countDown(2) Call countDown(1)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

{

——

public static void main(...)

Client

countDown(3) ; —————__|

'/ end main

public static void countDown(3)=%

{

—

—

System.out.printin(3);
if (3 = 1)

countDown(3 - 1); —————0n0u0|
'/ end countDown

public static void countDown(2)
{
System.out.printin(2);
if (2 = 1)

countDown(2 - 1); ———
'/ end countDown

3 is displayed

2 is displayed

public static void countDown(1)
.[
System.out.printin(l);
if (1= 1)

'/ end countDown

>3

1 is displayed

Figure 7-3 Tracing the recursive call countDown (3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(a) (b) (c) (d)

main(. . .): main(. . .): w mainC. . .): 1) W
countDown (3): countDown (3): j countDown(3):]
_“
integer: 3 countDown (2) : countDown(2):
Rf,:l:;-itﬁ calling point integer: 2 countDown(1):
Return to calling point . .
in countDown integer: l .
Return to calling point
in countDown

IGURE 7-4 The stack of activation records during the execution
of the call countDown (3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(e) (f) (2)

mainC. . .): W MmainC. . .): j main(. . .):)
~ - ™
countDown(3) : W countDown(3):
T
'T:ount[)own(?}: integer: 3
N~ _ ~ Return to calling point | - —
integer: 2 . inmain)
*~ Return to calling point
in countDown

L. s

IGURE 7-4 The stack of activation records during the execution
of the call countDown (3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Write a recursive void method countUp(n) that counts up from 1 to #, where »
iz a pogitive integer. Hint: A recursive call will occur before you display anything.

3. public static void countlUp{int nj

{
1F (n == 1)
{
countUpCn - 13 ;
system.out.printin(nl;
h

-7

K7

)

pwﬂ

{

}

Recursive Methods

ALl - T

N

That Return a Value

« Example:
= Computethesuml1l+2+...+n
= For any integer n > 0.

lic static int sumOf(int n)

int sum;
if (n == 1)
sum = 1:

-ﬁum = sumODf(n -

return sum;

1) + n;

‘g

=

Q™

(b) (c)
sumOf(1):
return 1;
sumOf(2): sumOf(2): *

return sumOf(1) + 2;

return sumOf(l) + 2;

sumOf(3):
return sumOf(2) + 3;

sumOf(3):

sumOf(3):

return sumOf(2) + 3;

return sumOf(2) + 3;

Figure 7-5 Tracing the execution of sumOf (3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

™ ‘

(d) (e)
sumOf(2):
return 1 + 2 = ?;
:—*”
sumOf(3): sumOf(3):

return sumOf(2) + 3;

return 3 + 3 = 6;*”

(f)

L— 6 is displayed

Figure 7-5 Tracing the execution of sumOf (3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 4 Write a recursive valued method that computes the product of the integers
from 1 to n, where 7 >0,

4. public static int productOf{int nj
{

int result = 1;
it n o= 1D
result = n * productDfin - 1);
return result:
} /5 end productOf

AL lo-_ T ;’.

Recursively Processing an
Array

« Consider an array of integers
* We seek a method to display all or part

== ¢ Declaration
| public static void displayArray
(int[] array, int first, int last)

.+ * Solution could be
: = |terative
= Recursive

cam TN >

£ N

Recursively Processing an Array

* Recursive solution starting with array[first]

public static void displayArray(int array[], int first, int Tast)

{
System.out.print(array[first] + " ");
> if (first < Tast)
= displayArray(array, first + 1, last);
: }

-

—

', * Recursive solution starting with array[last]
Vi

izgi public static void displayArray(int array[], int first, int last)
- !

if (first <= last)

{

displayArray(array, first, last - 1);
System.out.print (array[last] + " ");

}
}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

S

Dividing an Array in Half

« Common way to process arrays
recursively
= Divide array into two portions
;; = Process each portion separately

« Must find element at or near middle
~# int mid = (first + last) / 2;

s &
5 (a) (b)

FIGURE 7-6 Two arrays with their middle elements
within their left halves

>

Dividing an Array in Half

* Recursive method to display array
= Divides array into two portions

E public static void displayArray(int array[], 1int first, int last)
{
i if (first == last)
. System.out.print(array[first] + " ");
7) else
V4 {
LA int mid = (first + last) / 2;
— displayArray(array, first, mid);
displayArray(array, mid + 1, Tlast);
}
}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Binary Search of a Sorted Array

 Algorithm for binary search

Algorithm binarySearch(a, first, last, desiredItem)
mid = (first + last) / Z
if (first > last)

return false
else if (desiredItem equals a[mid]l)

return true
else if (desiredItem < a[mid])

return binarySearch(a, first, mid - 1, desiredItem)
else

return binarySearch(a, mid + 1, last, desiredItem)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(a) A search for 8

Look at the middle entry, 10:
2 4 5 7 8 10 12 15 18 21 24 26
0 1 2 3 4 5 (3 7 2 9 10 11

8 < 10, so search the left half of the array.

Look at the middle entry, 5:

2 4 5 7
0 1 2 3 4

8 = 5, so search the right half of the array.

Look at the middle entry, 7:

7 8
3 4
8 =7, so search the right half of the array.

Look at the middle entry, 8:

]
4
8 = 8, so the search ends. 8 is in the array.

Figure 18-6 A recursive binary search of a sorted array that
(a) finds its target;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(b) A search for 16

Look at the middle entry, 10:

2 4 5 7 8 10 12 15 18 21 24 26
0 1 2 3 4 5 [7 8 9 10 11
16 = 10, so search the right half of the array.
Look at the middle entry, 18:
12 15 18 21 24 26
6 7 8 0 10 11
16 << 18, so search the left half of the array.
Look at the middle entry, 12:
12 15
6 7
16 > 12, so search the right half of the array.
Look at the middle entry, 15:
15

16 = 15, so search the right half of the array.

The next subarray is empty, so the search ends. 16 is not in the array.

Figure 18-6 A recursive binary search of a sorted array that

(b) does not find its target

Copyright ©2012 by Pearson Education, Inc. All rights reserved

/Py

ATl e T

Efficiency of a
Binary Search of an Array

 Given n elements to be searched

* Number of recursive calls is of order
log, n
The time efficiency of a binary search
Best case: O(1)
Worst case: O(log n)

Average case: O(log n)

 How many compares to search for an
item In an array of 1 million items?

e~ Y

Java Class Libréqry:
The Method binarySearch

« Class Arrays contains versions of static
method

= Note specification

/** Searches an entire array for a given 1item.
@param array an array sorted in ascending order
@param desiredItem the item to be found in the array
@return index of the array entry that equals desiredItem;
otherwise returns -belongsAt - 1, where belongsAt 1is

the index of the array element that should contain
desiredItem */

public static int binarySearch(fype[] array, fype desiredIltem);

Copyright ©2012 by Pearson Education, Inc. All rights reserved

/Py

Merge Sort

* Divide array into two halves
= Sort the two halves
= Merge them into one sorted array

| » Uses strategy of “divide and conquer”

. il

= Divide problem up into two or more distinct,
smaller tasks

* Good application for recursion

First array Second array

31517 9 01214 6
3 = (), so copy 0 to new array K—y 0
31517 9 01214 6 2
3 > 2,so copy 2 to new array \‘-—-"J
—»| 3
3|57 9 01214 6 .
3 < 4,50 copy 3 to new array / New merged array
5
31517 9 O12 |46
5 > 4,s0 copy 4 to new array 6
o
31517109 0l2]41]6 7
5 < 6,50 copy 5 to new array 9
3151719 01214 6
7 > 6,80 copy 6 to new array
-
315171] 9 D214 6

The entire second array has been copied to the new array
Copy the rest of the first array to the new array

Figure 9-1 Merging two sorted arrays into one sorted array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

5 I 9 3 I 6 0 I 2 4 Divide the array into two halves
3 1 4 5 6 7
|
5 I 7 0 I 0 2 I 4 6 Sort the two halves

'\,_ 4___.———) Merge the sorted halves into

| another arr ay

Copy the merged array back into
the original array

B9 | e 10

=

) | e)
o | ——]
B —
=] | —)

Figure 9-2 The major steps in a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm wmergeSort(a, tempArray, first, last)
// Sorts the array entries a[first] through a[last] recursively.

' if (first < last)
o
! mid = (first + Tast) /2
! mergeSort(a, tempArray, first, mid)

mergeSort(a, tempArray, mid+ 1, last)
Merge the sorted halves a[first..mid] and a[mid + 1. .last] using the array tempArray

Merge Sort Algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

s (. . ¢
Algorithm to Merge

Algorithm merge(a, tempArray, first, mid, last)
// Merges the adjacent subarrays a[first..mid] and a[mid + 1..last].

beginHalfl = first
endHalfl = mid
beginHalf2 = mid + 1
endHalf2 = last

// While both subarrays are not empty, compare an entry in one subarray with

// an entry in the other, then copy the smaliler item into the temporary array
index = 0 // next available location in tempArray

while ((beginHalfl <= endHalfl) and (beginHalf2 <= endHalf2))

i
1f (a[beginHalfl] <= a[beginHalf2])
i
tempArray[index] = a[beginHalfl]
beginHalfl++
}
else
{
tempArray[index] = a[beginHalf2]
beginHalf2++
}
1ndex++
}

/{ Assertion: One subarray has been completely copied to tempArray.

Copy remaining entries from other subarray fo tempArray
Copy E"tnﬂsﬁoﬁbﬂ}ﬁ%a@f@m-ﬁ@fﬂﬁéﬁ@bﬂ Education, Inc. All rights reserved

e =l n

7 5 9 3 (i) 0 2 4
1 11
7 5 9 3 §] 0 2 4 Effect of
: | recursive
z o6 Iﬁ 19 calls to
7 5 9 3 6 0 2 4 mergeSort
3 4 7 8 13 14 17 18
7 5 9 3 6 0 2 4 ||
[| | | 1 | _
“ 5 oy 15¥ 0¥
E 5 7 3 9 0 6 2 4
| |
< Yo Y20
s 3 5 7 | 9 0 > | 4 6 ~ Merge steps
- ‘-" 1 |
. e * 21
Vi i

Copy to
original array

s

O | —y =
0 | e 3
FURy S T
O |] &
~ | ——]
O | -e— 'O

Figure 9-3 The effect of the recursive calls and
the merges during a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

alrraas .o T

Time Efficiency of Recurswe
Methods

 Consider method countdown

public static void countDown(int n)

{
System.out.println(n);
if (n > 1)
countDown(n - 1);
}

« Recurrence relation#(n) =1 + t(n - 1) for n > 1
* Proof by induction shows (n)=n
* Thus method is O(n)

cam TN ™,

Question 7 What is the Big Oh of the method sumOf given in Segment 7.12?

Question 8 Computing x” for some real number x and an integral power 17 > 0 has a simple
recursive solufion:

oyl
:::D=1

a. What recurrence relation describes this al gorithm*s time requirement?
b. By solving this recurrence relation, find the Big Oh of this al gorithm.

—_—

- ’r;.
A V4

s

Copyright ©2012 by Pearson Education, Inc. All rights reserved

7. Of(n). You can use the same recurrence relation that was shown in Segments 7.22 and 7.23 for the method - ountDown.

8. a.t(m) =1+ tn - 1) forn= 0,{(0)= 1.
b. Since £(;7) = 1 +1, the algorithm is O{#).

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Wi

Efficiency of Merge Sort

For n = 2K entries
= In general k levels of recursive calls are made

Each merge requires at most 3n — 1
comparisons

Calls to merge do at most 3n — 22
operations

Can be shown that efficiency is O(n log n)

Simple Solution to a Difficult "

Problem
» Consider Towers of Hanol puzzle

g = | |

Figure 7-7 The initial configuration of the
Towers of Hanoi for three disks.

/Py

ATl e T

Towers of Hanol

e Rules

1. Move one disk at a time. Each disk you
move must be a topmost disk.

2. No disk may rest on top of a disk smaller
than itself.

3. You can store disks on the second pole
temporarily, as long as you observe the
previous two rules.

Solution

Move a C
Move a C
Move a C
Move a C
Move a C
Move a C

Move a G

o

=
l

IS
IS
IS
IS
IS
IS
IS

K from
K from
K from
K from
K from
K from

K from

DO
DO
DO
DO
DO
DO

DO

elto
elto
e 3to
elto
e2to
e2to
elto

DO
00
DO
00
DO
DO

DO

i

2

3

N

PR
Ll
: Ll
§ L.l

Y Y P O S P O N S PR SV P S r e P

Figure 7-8 The sequence of moves for solving the Towers of
Hanoi problem with three disks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

e = n

RN N T R RV R RN N R R A i Y AP e

L L

Ll
d§ Ll
i LA

Figure 7-8 The sequence of moves for solving the Towers of
Hanoi problem with three disks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

QJuestion 9 We discovered the previous solution for three disks by trial and error. Using the
same approach, find a sequence of moves that solves the problem for four disks.

Move a disk from pole 1 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3
Move a disk from pole 1 to pole 2
Move a disk from pole 3 to pole 1
Move a disk from pole 3 to pole 2
Move a disk from pole 1 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3
Move a disk from pole 2 to pole 1
Move a disk from pole 3 to pole 1
Move a disk from pole 2 to pole 3
Move a disk from pole 1 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3

e TNy

ATl e T

Recursive Solution

 To solve for n disks ...
= Ask friend to solve for n — 1 disks

= He In turn asks another friend to solve for n —
2

= Etc.

=% = Each one lets previous friend know when their
: simpler task is finished

4
s‘_’,‘:

=

A

pe w0

e
B
L el
L Lla

Figure 7-9 The smaller problems in a recursive solution
for four disks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursive Algorithm, VER1

Algorithm solveTowers (numbe rOfDisks, startPole, tempPole, endPole)
if CnumberOflisks == 1)

Move disk from startPole fo endPole
else

{

solveTowers Cnumberdflisks - 1, startPole, endPole, tempPole)

Move disk from startPole fo endPole
solveTowers Cnumber0flisks - 1, tempPole, startPole, endPole)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursive Algorithm, VER?2

Algorithm solveTowers (nhumberOfDisks, startPole, tempPole, endPole)

if (humberOfDisks > 0)

{
solveTowers(numberOfDisks - 1, startPole, endPole, tempPole)
Move disk from startPole fo endPole
solveTowers(numberOfDisks - 1, tempPole, startPole, endPole)
h

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 10 For two disks, how many recursive calls are made by each version of the algo-
rithm just given?

10. 2 and#é, respectively.

Al e T

Algorithm Efficiency

* Moves required for n disks
mn) = mn -1 +1+ mn - 1)

- =2mn -1 +1

=

| C om(l) =1

)7 m2) = 3

Y 3) = 7 i

=« We note < m0) = and conjecture
m(4) = 15 m(n) = 2" - 1
m(5) = 31

(proved by induction)

3
m(6) = 63

com T Y

Poor Solution to a S‘iﬂmple
Problem

* Fibonacci sequence F,-1
1,1,2,3,5,8,13, ... Fi=1

F,=F,_ +F,_.>whennz2

Note the two

* Suggests a recursive solution o=t o

Algorithm Fibonacci(n)
1if (n <= 1)
returnl

else
returrk Fibonacci(n - 1))+ Fibmnaaci(n:3:25;>

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(a)

(b)

F, is computed 5 times F

6
F, is computed 3 times / \
v
3

F, is computed 2 times F

F; is computed once e N
\

F,is computed once Fj

FIGURE 7-10 The computation of the Fibonacci number F6

using (a) recursion; (b) iteration

Copyright ©2012 by Pearson Education, Inc. All rights reserved

N

Al e T N '.

]

Time Efficiency of Algorithm

* Looking for relationship

(2)=1+t1)+10)=1+F+Fog=1+F»,>F5
. (3)=1+12)+1(1)>1+Fr+F;=1+F3> F3
B (4)=1+1t3)+t2Q)>1+F3+F,=1+F,>F,

. * Can be shown that t(n)>F, forn > 2

"« Conclusion: Do not use recursive solution
that repeatedly solves same problem in its
recursive calls.

= SCTO

v

(Question 11 If you compute the Fibonnaci number 7, recursively, how many recursive
callz are made, and how many additions are performed?

Question 12 If you compute the Fibonnaci number 7, iteratively, how many additions
are performed?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

11. 24 recursive callz and 12 additions.

12. 5 additions.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al le—_ T

Taill Recursion

* When the last action performed by a
recursive method Is a recursive call

& ° Example- public static void countDown(int integer)

= {
' 1t (integer >= 1)
{
“%5 S cintln(integer);
S countDown(integer - 1);

}

* Repeats call with change in parameter or
variable

Al - T

Taill Recursion

« Consider this simple change to make an
iterative version countDonn(int integer)

{
(integer >= 1)
{
System.out.println(integer);
integer = integer - 1;
}
}

S = Replace if with while
= |nstead of recursive call, subtract 1 from
integer
» Change of tail recursion to iterative often
simple

P
/.

ATl e T

Indirect Recursion

» Consider chain of events
= Method A calls Method B
= Method B calls Method C
= and Method C calls Method A

. * Mutual recursion
~© = Method A calls Method B
» Method B calls Method A

"
5:_.'

isExpression -<m - 1sTerm «~--| 1sFactor
_ | isExpression _"'*___ 1sTerm <~ > isFactor
1sExpression __‘__": 1sTerm _‘__": isFactor

Figure 7-11 An example of indirect recursion

Copyright ©2012 by Pearson Education, Inc. All rights reserved

isVariable

Al e T N

Using a Stack Instead of
Recursion

* A way of replacing recursion with iteration
» Consider recursive displayArray

public void displayArray(int first, 1int last)
{
it (first == last)
System.out.printin(array[first] + " ");
else
{
int mid = first + (last - first) / 2;

displayArray(first, mid);
displayArray(mid + 1, Tast);
¥

P
B

-

A lo-_ T N ;'.

Using a Stack Instead of -
Recursion
 We make a stack that mimics the program
stack
- = Push objects onto stack like activation records
5' = Shown Is example record
private class Record

V4 private int first, last;
Y
e private Record(int firstlndex, int TastlIndex)

{
first = firstlndex;

last = lastlndex;
}

.

M

P -

i, <.I

———

- 4
i

L

-

& ==t £

=1

Using a Stack Instead of

Recursion

* |terative version of displayArray

{

private void displayArray(int first, int last)

boolean done = false;

StackInterface<Record> programStack = new LinkedStack<Record>();
programStack.push(new Record(first, last));

while (!done && !programStack.isEmpty())
{

Record topRecord = programStack.pop();
first = topRecord.first;

Tast = topRecord.last;
if (first == last)

System.out.printin(array[first] + " ");
else

{
int mid = first + (last - first) / 2;

programStack.push(new Record(mid + 1, Tast));

programStack.push(new Record(first, mid));
}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

™

Recursion
Chapter 7

YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET OUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

Edla

Copyright ©2012 by Pearson Education, Inc. All rights reserved

