Recursion

Chapter 7

YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND A TABLE. I HAVE THE ELVES START WHITTLING DICE AND GET OUT SOME PARCHMENT FOR CHARACTER SHEETS.

Contents

-What Is Recursion?

- Tracing a Recursive Method
- Recursive Methods That Return a Value
- Recursively Processing an Array
- Recursively Processing a Linked Chain
- The Time Efficiency of Recursive Methods
- The Time Efficiency of countDown
- The Time Efficiency of Computing x^{n}

Contents

- A Simple Solution to a Difficult Problem
- A Poor Solution to a Simple Problem
- Tail Recursion
- Indirect Recursion
- Using a Stack Instead of Recursion

Objectives

- Decide whether given recursive method will end successfully in finite amount of time
- Write recursive method
- Estimate time efficiency of recursive method
- Identify tail recursion and replace it with iteration

What Is Recursion?

- We often solve a problem by breaking it into smaller problems
- When the smaller problems are identical (except for size)
- This is called "recursion"
- Repeated smaller problems
- Until problem with known solution is reached
- Example: Counting down from 10

Figure 7-1 Counting down from 10

Figure 7-1 Counting down from 10

Figure 7-1 Counting down from 10

What Is Recursion

- A method that calls itself is
- A recursive method.
- The invocation is
- A recursive call or
- Recursive invocation
- Example:
- Countdown

```
/** Counts down from a given positive integer.
    @param integer an integer > 0 */
public static void countDown(int integer)
{
    System.out.println(integer);
    if (integer > 1)
        countDown(integer - 1);
} // end countDown
```


Design of Recursive Solution

-What part of solution can contribute directly?

- What smaller (identical) problem has solution that ...
- When taken with your contribution
- Provides the solution to the original problem
-When does process end?
- What smaller but identical problem has known solution
- Have you reached this problem, or base case?

Design Guidelines

- Method must receive input value
- Must contain logic that involves this input value and leads to different cases
- One or more cases should provide solution that does not require recursion
- Base case or stopping case
- One or more cases must include recursive invocation of method

Question 1 Write a recursive void method that skips n lines of output, where n is a positive integer. Use System.out.println() to skip one line.

Question 2 Describe a recursive algorithm that draws a given number of concentric circles. The innermost circle should have a given diameter. The diameter of each of the other circles should be four-thirds the diameter of the circle just inside it.

1. public static void skipLines(int givenNumber) \{
if (givenNumber >= 1)
\{
System.out.println();
skipLines(givenNumber - 1);
\} $/ /$ end if
\} // end skipLines
2. Algorithm drawConcentricCircles(givenNumber, givenDiameter, givenPoint) if (givenNumber >= 1) \{

Draw a circle whose diameter is givenDiameter and whose center is at givenPoint givenDiameter $=4 *$ givenDiameter $/ 3$
drawConcentricCircles(givenNumber - 1, givenDiameter, givenPoint)
\}

Tracing Recursive Method

- Given recursive countDown method

```
public static void countDown(int integer)
{
    System.out.println(integer);
    if (integer > 1)
        countDown(integer - 1);
} // end countDown
```

- Figure 7-2 The effect of the method call countDown (3)
(a)
(b)
(c)
countDown(3)
Display 3
Call countDown(2)
countDown (2)
Display 2
Call countDown(1)
countDown(1)
Display 1

Figure 7-3 Tracing the recursive call countDown (3)

FIGURE 7-4 The stack of activation records during the execution of the call countDown (3)

FIGURE 7-4 The stack of activation records during the execution of the call countDown (3)

Question 3 Write a recursive void method countUp(n) that counts up from 1 to n, where n is a positive integer. Hint: A recursive call will occur before you display anything.
3. public static void countUp (int n) \{
if ($n>=1$)
\{
countUp(n-1);
System.out.println(n);
\} // end if
\} // end countUp

Recursive Methods That Return a Value

- Example:
- Compute the sum $1+2+\ldots+n$
- For any integer $\mathrm{n}>0$.

```
/** @param n an integer > 0
    @return the sum 1 + 2 + ... + n */
public static int sum0f(int n)
{
    int sum;
    if (n == 1)
        sum = 1; // base case
    else
        sum = sum0f(n - 1) + n; // recursive call
    return sum;
} // end sum0f
```

(a)

(b)

(c)
return 1;
sum0f(2):
return sum0f(1) +2 ;
sum0f(3):
return sum0f(2) + 3;

Figure 7-5 Tracing the execution of sumOf (3)
(d)

(e)

(f)

6 is displayed

Figure 7-5 Tracing the execution of sumOf (3)

Question 4 Write a recursive valued method that computes the product of the integers from 1 to n, where $n>0$.
4. public static int product0f(int n) \{ int result = 1; if ($n>1$)
result $=n *$ product0f($n-1)$; return result; \} // end productof

Recursively Processing an Array

- Consider an array of integers
- We seek a method to display all or part
- Declaration public static void displayArray (int[] array, int first, int last)
- Solution could be
- Iterative
- Recursive

Recursively Processing an Array

- Recursive solution starting with array [first]

```
public static void displayArray(int array[], int first, int last)
{
    System.out.print(array[first] + " ");
    if (first < last)
        displayArray(array, first + 1, 1ast);
} // end displayArray
```

- Recursive solution starting with array [last]

```
public static void displayArray(int array[], int first, int last)
{
    if (first <= last)
    {
        displayArray(array, first, last - 1);
        System.out.print (array[last] + " ");
    } // end if
} // end displayArray
```


Dividing an Array in Half

- Common way to process arrays recursively
- Divide array into two portions
- Process each portion separately
- Must find element at or near middle int mid = (first + last) / 2;
(a)

(b)

FIGURE 7-6 Two arrays with their middle elements within their left halves

Dividing an Array in Half

- Recursive method to display array
- Divides array into two portions

```
public static void displayArray(int array[], int first, int last)
{
    if (first == last)
        System.out.print(array[first] + " ");
    e1se
    {
        int mid = (first + last) / 2;
        displayArray(array, first, mid);
        displayArray(array, mid + 1, last);
    } // end if
} // end displayArray
```


Binary Search of a Sorted Array

- Algorithm for binary search

```
Algorithm binarySearch(a, first, last, desiredItem)
mid = (first + last) / 2 '/ approximate midpoint
if (first > last)
    return false
else if (desiredItem equals a[mid])
    return true
else if (desiredItem < a[mid])
    return binarySearch(a, first, mid - 1, desiredItem)
else // desiredItem > a\m`d」
    return binarySearch(a, mid + 1, last, desiredItem)
```

(a) A search for 8

Look at the middle entry, 10 :

2	4	5	7	8	$\mathbf{1 0}$	12	15	18	21	24	26
0	1	2	3	4	5	6	7	8	9	10	11

$8<10$, so search the left half of the array.
Look at the middle entry, 5:

2	4	$\mathbf{5}$	7	8
0	1	2	3	4

$8>5$, so search the right half of the array.
Look at the middle entry, 7:

$8>7$, so search the right half of the array.
Look at the middle entry, 8 :

$8=8$, so the search ends. 8 is in the array.

Figure 18-6 A recursive binary search of a sorted array that (a) finds its target;
(b) A search for 16

Look at the middle entry, 10:

2	4	5	7	8	$\mathbf{1 0}$	12	15	18	21	24	26
0	1	2	3	4	5	6	7	8	9	10	11

$16>10$, so search the right half of the array.
Look at the middle entry, 18:

12	15	$\mathbf{1 8}$	21	24	26
6	7	8	9	10	11

$16<18$, so search the left half of the array.
Look at the middle entry, 12:

$\mathbf{1 2}$	15
6	7

$16>12$, so search the right half of the array.
Look at the middle entry, 15 :
$16>15$, so search the right half of the array.

The next subarray is empty, so the search ends. 16 is not in the array.

Figure 18-6 A recursive binary search of a sorted array that (b) does not find its target

Efficiency of a
 Binary Search of an Array

- Given n elements to be searched
- Number of recursive calls is of order

$\log _{2} n$

The time efficiency of a binary search
Best case: $\quad \mathrm{O}(1)$
Worst case: $\mathrm{O}(\log n)$
Average case: $\mathrm{O}(\log n)$

- How many compares to search for an item in an array of 1 million items?

Java Class Library: The Method binarySearch

- Class Arrays contains versions of static method
- Note specification
/** Searches an entire array for a given item.
@param array an array sorted in ascending order
@param desiredItem the item to be found in the array @return index of the array entry that equals desiredItem; otherwise returns -belongsAt - 1, where belongsAt is the index of the array element that should contain desiredItem */
public static int binarySearch(type[] array, type desiredItem);

Merge Sort

- Divide array into two halves
- Sort the two halves
- Merge them into one sorted array
- Uses strategy of "divide and conquer"
- Divide problem up into two or more distinct, smaller tasks
- Good application for recursion

Figure 9-1 Merging two sorted arrays into one sorted array

Figure 9-2 The major steps in a merge sort

Algorithm nergeSort(a, tempArray, first, 1ast)
// Sorts the array entries a[first] through a[last] recursively.

```
if (first < last)
```

\{
mid $=(f i r s t+1$ last $) / 2$
mergeSort (a, tempArray, first, mid)
mergeSort(a, tempArray, mid +1, last)
Merge the sorted halves a[first. .mid] and a[mid +1..1ast] using the array tempArray
\}

Merge Sort Algorithm

Algorithm to Merge

```
Algorithm merge(a, tempArray, first, mid, last)
// Merges the adjacent subarrays a[first..mid] and a[mid + 1..1ast].
beginHa1f1 = first
endHalf1 = mid
beginHalf2 = mid + 1
endHalf2 = last
// While both subarrays are not empty, compare an entry in one subarray with
// an entry in the other; then copy the smaller item into the temporary array
index = 0 // next available location in tempArray
while ( (beginHalf1 <= endHa1f1) and (beginHa1f2 <= endHa1f2) )
{
    if (a[beginHalf1] <= a[beginHalf2])
    {
        tempArray[index] = a[beginHa1f1]
        beginHalf1++
    }
    else
    {
        tempArray[index] = a[beginHa1f2]
        beginHa1f2++
    }
    index++
}
// Assertion: One subarray has been completely copied to tempArray.
```

Copy remaining entries from other subarray to tempArray Copy entries frombergiaceay toy artasba Education, Inc. All rights reserved

Figure 9-3 The effect of the recursive calls and the merges during a merge sort

Time Efficiency of Recursive Methods

- Consider method countdown

```
public static void countDown(int n)
{
    System.out.println(n);
    if (n > 1)
        countDown(n - 1);
} // end countDown
```

- Recurrence relation $t(n)=1+t(n-1)$ for $n>1$
- Proof by induction shows $t(n)=n$
- Thus method is $\mathrm{O}(\mathrm{n})$

Question 7 What is the Big Oh of the method sum0f given in Segment 7.12?
Question 8 Computing x^{n} for some real number x and an integral power $n \geq 0$ has a simple recursive solution:

$$
\begin{aligned}
& x^{n}=x x^{n-1} \\
& x^{0}=1
\end{aligned}
$$

a. What recurrence relation describes this al gorithm's time requirement?
b. By solving this recurrence relation, find the Big Oh of this algorithm.
7. $O(n)$. You can use the same recurrence relation that was shown in Segments 7.22 and 7.23 for the method countDown.
8. a. $t(n)=1+t(n-1)$ for $n>0, t(0)=1$.
b. Since $t(n)=n+1$, the algorithm is $O(n)$.

Efficiency of Merge Sort

- For $n=2^{k}$ entries
- In general k levels of recursive calls are made
- Each merge requires at most $3 n-1$ comparisons
- Calls to merge do at most $3 n-2^{2}$ operations
- Can be shown that efficiency is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Simple Solution to a Difficult Problem

- Consider Towers of Hanoi puzzle

Figure 7-7 The initial configuration of the Towers of Hanoi for three disks.

Towers of Hanoi

- Rules

1. Move one disk at a time. Each disk you move must be a topmost disk.
2. No disk may rest on top of a disk smaller than itself.
3. You can store disks on the second pole temporarily, as long as you observe the previous two rules.

Solution

- Move a disk from pole 1 to pole 3
- Move a disk from pole 1 to pole 2
- Move a disk from pole 3 to pole 2
- Move a disk from pole 1 to pole 3
- Move a disk from pole 2 to pole 1
- Move a disk from pole 2 to pole 3
- Move a disk from pole 1 to pole 3

Figure 7-8 The sequence of moves for solving the Towers of Hanoi problem with three disks

Figure 7-8 The sequence of moves for solving the Towers of Hanoi problem with three disks

Question 9 We discovered the previous solution for three disks by trial and error. Using the same approach, find a sequence of moves that solves the problem for four disks.
9. Move a disk from pole 1 to pole 2 Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3
Move a disk from pole 1 to pole 2
Move a disk from pole 3 to pole 1
Move a disk from pole 3 to pole 2
Move a disk from pole 1 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3
Move a disk from pole 2 to pole 1 Move a disk from pole 3 to pole 1
Move a disk from pole 2 to pole 3
Move a disk from pole 1 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3

Recursive Solution

- To solve for n disks ...
- Ask friend to solve for $n-1$ disks
- He in turn asks another friend to solve for n 2
- Etc.
- Each one lets previous friend know when their simpler task is finished

Figure 7-9 The smaller problems in a recursive solution for four disks

Recursive Algorithm, VER1

```
Algorithm solveTowers(numberOfDisks, startPole, tempPole, endPole)
if (number0fDisks == 1)
    Move disk from startPole to endPole
else
{
    solveTowers(number0fDisks - 1, startPole, endPole, tempPole)
    Move disk from startPole to endPole
    solveTowers(number0fDisks - 1, tempPole, startPole, endPole)
}
```


Recursive Algorithm, VER2

Algorithm solveTowers(numberOfDisks, startPole, tempPole, endPole) // Version 2
if (numberOfDisks > 0)
\{
solveTowers(numberOfDisks - 1, startPole, endPole, tempPole) Move disk from startPole to endPole solveTowers(numberOfDisks - 1, tempPole, startPole, endPole) \}

Question 10 For two disks, how many recursive calls are made by each version of the algorithm just given?
10. 2 and 6 , respectively.

Algorithm Efficiency

- Moves required for n disks

$$
\begin{aligned}
m(n) & =m(n-1)+1+m(n-1) \\
& =2 m(n-1)+1
\end{aligned}
$$

-We note $\left\{\begin{array}{l}m(1)=1 \\ m(2)=3 \\ m(3)=7 \\ m(4)=15 \\ m(5)=31 \\ m(6)=63\end{array}\right.$
and conjecture $m(n)=2^{n}-1$
(proved by induction)

Poor Solution to a Simple Problem

- Fibonacci sequence $F_{0}=1$

$$
1,1,2,3,5,8,13, \ldots \begin{aligned}
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \text { when } n \geq 2
\end{aligned}
$$

- Suggests a recursive solution Note the two recursive calls

(a) $\quad F_{2}$ is computed 5 times F_{3} is computed 3 times F_{4} is computed 2 times F_{5} is computed once F_{6} is computed once

(b) $\quad F_{0}=1$
$F_{1}=1$
$F_{2}=F_{1}+F_{0}=2$
$F_{3}=F_{2}+F_{1}=3$
$F_{4}=F_{3}+F_{2}=5$
$F_{5}=F_{4}+F_{3}=8$
$F_{6}=F_{5}+F_{4}=13$
FIGURE 7-10 The computation of the Fibonacci number F6 using (a) recursion; (b) iteration

Time Efficiency of Algorithm

- Looking for relationship

$$
\begin{aligned}
& t(2)=1+t(1)+t(0)=1+F_{1}+F_{0}=1+F_{2}>F_{2} \\
& t(3)=1+t(2)+t(1)>1+F_{2}+F_{1}=1+F_{3}>F_{3} \\
& t(4)=1+t(3)+t(2)>1+F_{3}+F_{2}=1+F_{4}>F_{4}
\end{aligned}
$$

- Can be shown that $t(n)>F_{n}$ for $n \geq 2$
- Conclusion: Do not use recursive solution that repeatedly solves same problem in its recursive calls.

Question 11 If you compute the Fibonnaci number F_{6} recursively, how many recursive calls are made, and how many additions are performed?

Question 12 If you compute the Fibonnaci number F_{6} iteratively, how many additions are performed?
11. 24 recursive calls and 12 additions.
12. 5 additions.

Tail Recursion

- When the last action performed by a recursive method is a recursive call
- Example:

```
public static void countDown(int integer)
{
    if (integer >= 1)
    {
        System_puntln(integer);
        countDown(integer - 1);
} // end countDown
```

- Repeats call with change in parameter or variable

Tail Recursion

- Consider this simple change to make an iterative version

```
public static void countDown(int integer)
{
    while (integer >= 1)
    {
        System.out.println(integer);
        integer = integer - 1;
    } // end while
} // end countDown
```

- Replace if with while
- Instead of recursive call, subtract 1 from integer
- Change of tail recursion to iterative often simple

Indirect Recursion

- Consider chain of events
- Method A calls Method B
- Method B calls Method C
- and Method C calls Method A
- Mutual recursion
- Method A calls Method B
- Method B calls Method A

Figure 7-11 An example of indirect recursion

Using a Stack Instead of Recursion

- A way of replacing recursion with iteration
- Consider recursive displayArray

```
pub1ic void displayArray(int first, int last)
{
    if (first == last)
        System.out.println(array[first] + " ");
    e1se
    {
        int mid = first + (last - first) / 2; // improved calculation of
        displayArray(first, mid);
        displayArray(mid + 1, last);
    } // end if
} // end displayArray
```


Using a Stack Instead of Recursion

- We make a stack that mimics the program stack
- Push objects onto stack like activation records
- Shown is example record

```
private class Record
{
    private int first, last;
    private Record(int firstIndex, int lastIndex)
    {
        first = firstIndex;
        1ast = 1astIndex;
    } // end constructor
} // end Record
```


Using a Stack Instead of Recursion
 - Iterative version of displayArray

```
private void displayArray(int first, int last)
{
    boolean done = false;
    StackInterface<Record> programStack = new LinkedStack<Record>();
    programStack.push(new Record(first, last));
    while (!done && !programStack.isEmpty())
    {
        Record topRecord = programStack.pop();
        first = topRecord.first;
        last = topRecord.last;
        if (first == last)
            System.out.println(array[first] + " ");
        else
        {
            int mid = first + (last - first) / 2;
                // Note the order of the records pushed onto the stack
                programStack.push(new Record(mid + 1, last));
                programStack.push(new Record(first, mid));
    } // end if
    } // end while
} // end disp7ayArray
```


Recursion Chapter 7

YOUR PARTY ENTERS THE TAVERN.
I GATHER EVERYONE AROUND A TABLE. I HAVE THE ELVES START WHITTLING DICE AND GET OUT SOME PARCHMENT FOR CHARACTER SHEETS.

