
Recursion

Chapter 7

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• What Is Recursion?

• Tracing a Recursive Method

• Recursive Methods That Return a Value

• Recursively Processing an Array

• Recursively Processing a Linked Chain

• The Time Efficiency of Recursive Methods

 The Time Efficiency of countDown

 The Time Efficiency of Computing xn

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• A Simple Solution to a Difficult Problem

• A Poor Solution to a Simple Problem

• Tail Recursion

• Indirect Recursion

• Using a Stack Instead of Recursion

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Decide whether given recursive method

will end successfully in finite amount of

time

• Write recursive method

• Estimate time efficiency of recursive

method

• Identify tail recursion and replace it with

iteration

Copyright ©2012 by Pearson Education, Inc. All rights reserved

What Is Recursion?

• We often solve a problem by breaking it

into smaller problems

• When the smaller problems are identical

(except for size)

 This is called “recursion”

• Repeated smaller problems

 Until problem with known solution is reached

• Example: Counting down from 10

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-1 Counting down from 10

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-1 Counting down from 10

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-1 Counting down from 10

Copyright ©2012 by Pearson Education, Inc. All rights reserved

What Is Recursion

• A method that calls itself is

 A recursive method.

• The invocation is

 A recursive call or

 Recursive invocation

• Example:

 Countdown

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Design of Recursive Solution

• What part of solution can contribute directly?

• What smaller (identical) problem has solution

that …

 When taken with your contribution

 Provides the solution to the original problem

• When does process end?

 What smaller but identical problem has known

solution

 Have you reached this problem, or base case?
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Design Guidelines

• Method must receive input value

• Must contain logic that involves this input

value and leads to different cases

• One or more cases should provide

solution that does not require recursion

 Base case or stopping case

• One or more cases must include recursive

invocation of method

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Tracing Recursive Method

• Given recursive countDown method

• Figure 7-2 The effect of the method call
countDown(3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-3 Tracing the recursive call countDown(3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 7-4 The stack of activation records during the execution
of the call countDown(3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 7-4 The stack of activation records during the execution
of the call countDown(3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursive Methods

That Return a Value
• Example:

 Compute the sum 1 + 2 + . . . + n

 For any integer n > 0.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-5 Tracing the execution of sumOf(3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-5 Tracing the execution of sumOf(3)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursively Processing an

Array
• Consider an array of integers

• We seek a method to display all or part

• Declaration
public static void displayArray

(int[] array, int first, int last)

• Solution could be

 Iterative

 Recursive

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursively Processing an Array

• Recursive solution starting with array[first]

• Recursive solution starting with array[last]

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Dividing an Array in Half

• Common way to process arrays

recursively

 Divide array into two portions

 Process each portion separately

• Must find element at or near middle
int mid = (first + last) / 2;

FIGURE 7-6 Two arrays with their middle elements
within their left halves

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Dividing an Array in Half

• Recursive method to display array

 Divides array into two portions

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Binary Search of a Sorted Array

• Algorithm for binary search

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 18-6 A recursive binary search of a sorted array that

(a) finds its target;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 18-6 A recursive binary search of a sorted array that

(b) does not find its target

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency of a

Binary Search of an Array

• Given n elements to be searched

• Number of recursive calls is of order

 log2 n

• How many compares to search for an

item in an array of 1 million items?
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library:
The Method binarySearch

• Class Arrays contains versions of static

method

 Note specification

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Merge Sort

• Divide array into two halves

 Sort the two halves

 Merge them into one sorted array

• Uses strategy of “divide and conquer”

 Divide problem up into two or more distinct,

smaller tasks

• Good application for recursion

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-1 Merging two sorted arrays into one sorted array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-2 The major steps in a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Merge Sort Algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm to Merge

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 9-3 The effect of the recursive calls and

the merges during a merge sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Time Efficiency of Recursive

Methods
• Consider method countdown

• Recurrence relation

• Proof by induction shows

• Thus method is O(n)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Efficiency of Merge Sort

• For n = 2k entries

 In general k levels of recursive calls are made

• Each merge requires at most 3n – 1

comparisons

• Calls to merge do at most 3n – 22

operations

• Can be shown that efficiency is O(n log n)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Simple Solution to a Difficult

Problem
• Consider Towers of Hanoi puzzle

Figure 7-7 The initial configuration of the
Towers of Hanoi for three disks.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Towers of Hanoi

• Rules

1. Move one disk at a time. Each disk you

move must be a topmost disk.

2. No disk may rest on top of a disk smaller

than itself.

3. You can store disks on the second pole

temporarily, as long as you observe the

previous two rules.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Solution
• Move a disk from pole 1 to pole 3

• Move a disk from pole 1 to pole 2

• Move a disk from pole 3 to pole 2

• Move a disk from pole 1 to pole 3

• Move a disk from pole 2 to pole 1

• Move a disk from pole 2 to pole 3

• Move a disk from pole 1 to pole 3

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-8 The sequence of moves for solving the Towers of

Hanoi problem with three disks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-8 The sequence of moves for solving the Towers of

Hanoi problem with three disks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursive Solution

• To solve for n disks …

 Ask friend to solve for n – 1 disks

 He in turn asks another friend to solve for n –

2

 Etc.

 Each one lets previous friend know when their

simpler task is finished

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-9 The smaller problems in a recursive solution

for four disks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursive Algorithm, VER1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursive Algorithm, VER2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm Efficiency

• Moves required for n disks

• We note and conjecture

 (proved by induction)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Poor Solution to a Simple

Problem
• Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, …

• Suggests a recursive solution Note the two
recursive calls

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 7-10 The computation of the Fibonacci number F6

using (a) recursion; (b) iteration

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Time Efficiency of Algorithm

• Looking for relationship

• Can be shown that

• Conclusion: Do not use recursive solution

that repeatedly solves same problem in its

recursive calls.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Tail Recursion

• When the last action performed by a

recursive method is a recursive call

• Example:

• Repeats call with change in parameter or

variable Copyright ©2012 by Pearson Education, Inc. All rights reserved

Tail Recursion

• Consider this simple change to make an

iterative version

 Replace if with while

 Instead of recursive call, subtract 1 from
integer

• Change of tail recursion to iterative often

simple
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Indirect Recursion

• Consider chain of events

 Method A calls Method B

 Method B calls Method C

 and Method C calls Method A

• Mutual recursion

 Method A calls Method B

 Method B calls Method A

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 7-11 An example of indirect recursion

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using a Stack Instead of

Recursion
• A way of replacing recursion with iteration

• Consider recursive displayArray

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using a Stack Instead of

Recursion
• We make a stack that mimics the program

stack

 Push objects onto stack like activation records

 Shown is example record

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using a Stack Instead of

Recursion
• Iterative version of displayArray

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Recursion
Chapter 7

Copyright ©2012 by Pearson Education, Inc. All rights reserved

