Q™

An Introduction to Sorting

Chapter 8

IIIIIIIIIIII

Data Structures
and Abstractions

with e
Java FRANK M. CARRANO
TR AN e

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ARl e T

Contents

* Organizing Java Methods That Sort an
Array

a Selection Sort
A = |terative Selection Sort

» Recursive Selection Sort
=+ = The Efficiency of Selection Sort

AL lo-_ T
Contents

* |nsertion Sort
= |[terative Insertion Sort
= Recursive Insertion Sort
= The Efficiency of Insertion Sort
= = |nsertion Sort of a Chain of Linked Nodes
.+ * Shell Sort
"~ The Java Code
= The Efficiency of Shell Sort

« Comparing the Algorithms

/Py

ATl e T

Objectives

« Sort array into ascending order using
= Selection sort
= Insertion sort
= Shell sort

.. * Sorta chain of linked nodes into
.+ ascending order using insertion sort

» Assess efficiency of a sort, discuss relative
efficiencies of various methods

"
e

ATl e T

Sorting

* Arranging things into either ascending or
descending order is called “sorting”

» This chapter discusses, Implements
simple algorithms that sort items into
ascending order

= Sort into descending order with a few
changes

 |[n Java, possible to create class of static
methods which sort objects of an array

"

y 3

%’ 4
3 1|

A le-_ T N

7
| ‘

Sorting an Array

* For an array to be sortable, objects must
be comparable

e = Must implement interface Comparable
o <T extends Comparable<Ts>>

. * We could begin our class with
AV

: <
323; public class SortArray
{

public static <T extends Comparable<T>> void sort(T[] a, int n)

{

s

e =l n

<<interface>>
Comparable<T>

+compareTo(other: T): integer

]

Widget

compareTo(other: Widget): integen

Gadget

Figure 8-1 The class Gadget Is derived from the class
Widget, which implements the interface Comparable

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ATl e T

Selection Sort

« Example of sorting books by height
= Take all books off shelf
. = Select shortest , replace on shelf
— = Continue until all books
-« Alternative
¢ = Look down shelf, select shortest
= Swap first with selected shortest

= Move to second slot, repeat process

~3 ™~

Before E“
A

+ Swap

After

Figure 8-2 Before and after exchanging the
shortest book and the first book

Copyright ©2012 by Pearson Education, Inc. All rights reserved

a[0] a[1] a[2] a[3] a[4]

s | 8 | 10| 2 5
y T
s | 8 | 10| 2 5
0 | 15 | 8
) s | 10 | 15 5 ¥ N
0 | 15 | 8
P —
) s | 10 | 15 5
s | 15 | 10
s | 15 | 10
s | 10 | 15

Figure 8-3 A selection sort of an array of integers
Into ascending order

Copyright ©2012 by Pearson Education, Inc. All rights reserved

-4

-

Selection Sort

* Pseudocode for algorithm

Algorithm selectionSort(a, n)

“ for (index = 0; index < n - 1; index++)

{
=

indexOfNextSmallest = the index of the smallest value among

~ alindex], al[index + 1], . . . , a[n - 1]
% Interchange the values of a[index] and a[indexOfNextSmallest]
.l

}

View source code, Listing 8-1
== Efﬁciency Of 9 Note: Code listing files ;(nz)

must be in same folder
as PowerPoint files
for links to work

| Copyright ©2012 by Pearson Education, Inc. All rights reserved

¥
B,

Chapter08-code_listings.htm
Chapter08-code_listings.htm
Chapter08-code_listings.htm

(Question 1 Trace the steps that a selection sort takes when sorting the following array into
ascending order: 9 6 2 4 8.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

AL lo-_ T
Insertion Sort

* When book found taller than one to the
right
= Remove book to right
= Slide taller book to right
- = Insert shorter book into that spot
& » Compare shorter book just moved to left
=« Make exchange if needed
» Continue ...

/Py

(c)

(b) =
(d)

Figure 8-4 The placement of the third book
during an insertion sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

1. Remove the next unsorted book.

2. Slide the sorted books to the right one by one until
you find the right spot for the removed book.
3. Insert the book into its new position.

Figure 8-5 An insertion sort of books

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Insertion Sort
 Algorithms

Algorithm -insertionSort(a, first, last)
// Sorts the array entries a[first] through a[last] iteratively.

for (unsorted = first + 1 through last)
{

nextToInsert = alunsorted]
insertInOrder(nextTolInsert, a, first, unsorted - 1)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Insertion Sort

 Algorithms

Algorithm insertInOrder(anEntry, a, begin, end)
// Inserts anEntry into the sorted entries a[begin] through a[end].

index = end // index of last entry in the sorted portion
// make room, if needed, in sorted portion for another entry
while ((index >= begin) and (anEntry < alindex]))

{
a[index + 1] = al[index] // make room
index--

}

// Assertion: a[index + 1] is available.

alindex + 1] = anEntry // insert

Copyright ©2012 by Pearson Education, Inc. All rights reserved

=3
o

QQuestion 2 Trace the steps that an insertion sort takes when sorting the following array
into ascending order: 9 6 2 4 8.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Insertion Sort

* Recursive algorithm

Algorithm 1insertionSort(a, first, last)

if (the array contains more than one entry)

{

Sort the array entries a[first] through a[last - 1]
Insert the last entry a[last] into its correct sorted position within the rest of the array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

)
\‘g

Insertion Sort

 Recursive Java method

public static <T extends Comparable<? super T>>
void insertionSort(T[] a, int first, int Tast)

{
1f (first < last)
{
insertionSort(a, first, last - 1);
insertInOrder(al[last], a, first, last - 1);
}
}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Sorlted Unsorted
1 I
5 8 3 0 4
5 8 9 4
\‘__
V.
5 8 0 4
7 N\
5 8 0 4
5 8 0 4
Sorlted Unsorted
|| |
3 5 8 9 4

Figure 8-6 Inserting the next unsorted entry into its proper location
within the sorted portion of an array during an insertion sort

Copyright ©2012 by Pearson Education, Inc. All rights reserved

8 | 2 | 6 | 4 o | 7 1
8 | 2| 6 | 4 o | 7 1
2 | 8 | 6 | 4 o | 7 1
2 | 6 | 8 | 4| 9 |7 1
2 | 4 | 6 | 8 | 9 | 7 1
2 | 4 | 6| 8| o9 | 7 1

F—_ —
2 | 4] 6] 7 8 | o 1 |

l 1| 2] 46] 78] o

Figure 8-7 An insertion sort of an array of integers into
ascending order

\ Copyright ©2012 by Pearson Education, Inc. All rights reserved

Insertion Sort

* The algorithm insertInOrder: first draft.

Algorithm insertInOrder(anEntry, a, begin, end)

if (anEntry >= alend])
alend + 1] = anEntry
else

{
alend + 1] = al[end]
insertInOrder(anEntry, a, begin, end - 1)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

s

(a) (9) 9>8.s0it belongs after §
s |6 | s | |]
T I I T
T e

Figure 8-8 Inserting the first unsorted entry into the
sorted portion of the array. (a) The entry is greater than
or equal to the last sorted entry;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

& . O

(b) @ 3 < 8, s0...

2 S 8

I
Sorted

shift 8, and ...
Y.\

- 2 5 8

"

= . '

- Sorted

= O

—r | : | insert 3 into the rest of the sorted portion

. el

294 2 5 | s
Y | |
- I

Sorted

Figure 8-8 Inserting the first unsorted entry into the
sorted portion of the array. (b) the entry is smaller
than the last sorted entry

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Insertion Sort

* The algorithm insertInOrder: final draft.

Algorithm -insertInOrder(anEntry, a, begin, end)

if (anEntry >= a[end])
alend + 1] = anEntry
else if (begin < end)

{
alend + 1] = alend]
insertInOrder(anEntry, a, begin, end - 1)
}
else
{
a[lend + 1] = a[end]
alend] = anEntry
}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

i ’1t
R
A O, N
" g{\‘.l‘n:k

L e
P & I L=
—

Insertion Sort

» Efficiency

= |Loop executes at most
1+2+...(n-1)times

n-(n—1)
2

= Sum IS

= Which gives O(n?)
» Best case — array already in order, O(n)

Insertion Sort of a Chain
of Linked Nodes

-GGG oG]

firstNode

Figure 8-9 A chain of integers sorted into ascending order

J Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al e T ;'.

Insertion Sort of a Chaln
of Linked Nodes

« Consider inserting node in chain in correct
position
 First locate where It should go

= Make comparisons from head towards end of
g chain
=% = During chain traversal, keep reference to
= previous node of comparison

"
=

6 belongs here; it is greater than
2,3, and 5 but less than 8

firstNode

TG B : (0] e
!

previousNode & | currentNode

Figure 8-10 During the traversal of a chain to locate the insertion
point, save a reference to the node before the current one

Copyright ©2012 by Pearson Education, Inc. All rights reserved

I CNacYacYacracNaD

f1rstNode

(b)

NEDRarCTaC S arC T aD

firstNode ‘

unsortedPart

Figure 8-11 Breaking a chain of nodes into two pieces as the first
step in an insertion sort: (a) the original chain; (b) the two pieces

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A le-_ T Y

Insertion Sort of a Chalin
of Linked Nodes

 Consider a class which holds a collection

with linked list
o public class LinkedGroup<T extends Comparable<? super T>>
e implements GroupInterface<T>
{
private Node firstNode;
7 int length;
2V4
A

 We will add a sort method to this class
* Note source code listings, Listing 8-A, 8-B

‘g

=

Chapter08-code_listings.htm
Chapter08-code_listings.htm
Chapter08-code_listings.htm
Chapter08-code_listings.htm
Chapter08-code_listings.htm
Chapter08-code_listings.htm

e Lo T

Insertion Sort of a Chaln
of Linked Nodes

» Efficiency
= As before, loop executes at most
< 1+2+..(n—-1)times

= Results in efficiency of O(n?)

= * Insertion sort Is reasonable way to sort
" chain of linked nodes

Q™

/

Question 3 In the previous method insertionSort, if you move the line
unsortedPart = unsortedPart.getNextMNode () ;

after the call to insertIndrder, will the method still work? Explain.

(Question 4 The previous method insertionSort is not a static method. Why?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

3.

4.

No; insertInOrder links the node to be inserted into the sorted part of the chain so that the node no longer refer-
ences the rest of the unsorted part. Since unsortedPart still references the inserted node, executing the line in
question next would make unsortedPart either reference a node in the sorted part or be null.

The public method insertionSort is to be invoked by using an object of LinkedGroup, which is the class that
defines this method. Thus, the method should not be static.

ATl e T

Shell Sort

* Previously mentioned sorts are simple,
often useful
= However can be inefficient for large arrays
= Array entries move only to adjacent locations

"
e

-~ * Shell sort moves entries beyond adjacent

- locations

=« Sort sub arrays of entries at equally spaced
iIndices

Figure 8-12 An array and the subarrays formed by grouping
entries whose indices are 6 apart

Copyright ©2012 by Pearson Education, Inc. All rights reserved

0 1 2 3 4 5 6 7 8 0 10 11 12

Figure 8-13 The subarrays of Figure 8-12 after each is sorted,
and the array that contains them

Copyright ©2012 by Pearson Education, Inc. All rights reserved

o

Figure 8-14 The subarrays of the array in Figure 8-13 formed by
grouping entries whose indices are 3 apart

Copyright ©2012 by Pearson Education, Inc. All rights reserved

~3 ™

0 1 2 3 4 5 6 7 8 0 10 11 12

Figure 8-15 The subarrays of Figure 8-14 after each is sorted,
and the array that contains them

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 5 Apply the Shell sort tothe array9 8 2 7 5 4 6 3 1, with index separations
of 4, 2, and 1. What are the intermediate steps?

A le-_ T Y

5. First, you consider the subarray of equally spaced integers at the indices 0, 4, and 8 (they appear in bold):

982754631

Now sort them to get
182754639

The indices 0, 4, and 8 have a separation of 4. Next, consider the integers at indices 1 and 5:
182754639

Sort them to get
142758639

Then sort the integers at indices 2 and 6; they already are in order:
142758639

Next, consider the integers at indices 3 and 7. Sort them to get
1423586789

Now decreaze the separation between indices to 2. You congider the integers at the indices 0,2, 4, 6, and &:
142358679

You find that they are sorted. Then consider the integers at indices 1,3, 5, and 7:
142358679

Sort them to get
132457689

Decreazing the separation to 1 resultz in an ordinary insertion zort of an array that is almost sorted.

‘g

S

L Al les SRS .]
-

Java Code

* Incremental Insertion Sort Listing 8-C
 Method which calls the

IncrementalInsertionSort

public static <T extends Comparable<? super T>>
void shellSort(T[] a, int first, int last)

{
int n = last - first + 1;
for (int space = n / 2; space > 0; space = space / 2)
{
for (int begin = first; begin < first + space; begin++)
incrementalInsertionSort(a, begin, last, space);
}
}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter08-code_listings.htm
Chapter08-code_listings.htm
Chapter08-code_listings.htm

(Question 6 Trace the steps that a Shell sort takes when sorting the following array into
ascending order: 9 6 2 4 8 7 5 3.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

@ O O O O O 8m S Ch
th h £ I b2 b W B4 b b
el el G o R A R LA
00 20 Qb e MO OO DD NS QO
SR TR R (R T TS S TR R
VI Owm e Lh Lh oy La La Lha
] ke e e o G T Ll L L

9
3
&
&
&
&
3
2
2
2

2
ki
=
g

Now apply a regular inzertion sort.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Best Case Average Case Worst Case

Selection sort on?) owmn?) on?)
Insertion sort O(n) owmn?) on?)
Shell sort O(n) O(n') O(n?) or O(n'-)

Figure 8-16 The time efficiencies of three sorting algorithms,
expressed in Big Oh notation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 8

Copyright ©2012 by Pearson Education, Inc. All rights reserved

