Stacks

Chapter 5

IIIIIIIIIII N

Data Structures
and Abstractions

with e
Java FRANK M. CARRANO
TR NN e

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Wi

ATl e T

Contents

» Specifications of the ADT Stack

» Using a Stack to Process Algebraic

Expressions

= A Problem Solved: Checking for Balanced Delimiters in
an Infix Algebraic Expression

= A Problem Solved: Transforming an Infix Expression to a
Postfix Expression

= A Problem Solved: Evaluating Postfix Expressions
= A Problem Solved: Evaluating Infix Expressions

cam TN ™,

Contents

* The Program Stack
& + Java Class Library: The Class Stack

N
-

-
e
2

e

sy
Svi
s

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ATl e T

Objectives

* Describe operations of ADT stack

~ -+ Use stack to decide whether delimiters In
& an algebraic expression are paired
correctly

= * Use stack to convert infix expression to
= postfix expression

/Py

o/

s

o/

ATl e T

Objectives

se stack to eva
se stack to eva
se a stack In a

uate postfix expression
uate Infix expression

program

 Describe how Java run-time environment
& uses stack to track execution of methods

ATl e T

Specifications of a Stack

* Organizes entries according to order
added
 All additions added to one end of stack
= Added to “top”
- = Called a "push”
» Access to stack restricted

= Access only top entry
= Remove called a “pop”

"
e

Figure 5-1 Some familiar stacks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ABSTRACT DATA TYPE STACK

DATE

» A collection of objects in reverse chronological order and having the same data type

OPERATIONS
PSEUDOCODE UML DESCRIPTION
push(newEntry) +push(newEntry: T): void Task: Adds a new entry to the top of the
stack.
Input: newEntry is the new entry.
Output: None.
pop() +popO: T Task: Removes and returns the stack’s top
entry.
Input: None.

Output: Returns either the stack’s top entry
or. if the stack is empty before the

operation. null.
o N O T R T N R R R R e i T o N L A R T R Y i

ADT Stack

Copyright ©2012 by Pearson Education, Inc. All rights reserved

R A e R e N e Y L N N e N N N i i N e N T b A R P g S R A L

peek () +peek(): T Task: Retrieves the stack’s top entry without
changing the stack in any way.
Input: None.
Output: Returns either the stack’s top entry
or, if the stack i1s empty. null.

isEmpty () +isEmpty(): boolean Task: Detects whether the stack is empty.
Input: None.
Output: Returns true if the stack is empty.

clear() +clear(): void Task: Removes all entries from the stack.
Input: None.
Output: None.

ADT Stack

Copyright ©2012 by Pearson Education, Inc. All rights reserved

* Example usage

com N,

Specify Class Stack

* Interface Note: Code listing files
= Note source code, Listing 5-1

must be in same folder
as PowerPoint files
for links to work

StackInterface<String> stringStack = new OurStack<5tring>();
stringStack.push("Jim");

stringStack.push("Jess");

stringStack.push("J1i11");

stringStack.push("Jane");

stringStack.push("Joe™);

String top = stringStack.peek();
System.out.println(top + " is at the top of the stack.");

top = stringStack.pop();
System.out.printlin(top + " is removed from the stack.");

top = stringStack.peek();

System.out.println(top + " is at the top of the stack.");
top = stringStack.pop();

System.out.println(top + " is removed from the stack.");

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter05-code_listings.htm
Chapter05-code_listings.htm
Chapter05-code_listings.htm

igure 5-2 A stack of strings after (a) push adds Jim; (b) push adds Jess;
(c) push adds Jill; (d) push adds Jane; (e) push adds Joe; (f) pop
retrieves and removes Joe; (g) pop retrieves and removes Jane

Copyright ©2012 by Pearson Education, Inc. All rights reserved

arraai le-_ T N "ﬂiilb
Question 1 After the following statements execute, what string is at the top of the stack
and what string is at the bottom?

stackInterface<String> stringstack = new Ourbtack<>tring=0_) ;
stringstack. push("Jlim™) ;

stringstack. push(less™);

stringstack. pop() ;

stringstack. push("1711");

stringstack. push("Jane™);

stringstack. pop();

Question 2 Consider the stack that was created in Question 1, and define a new empty
stack nameStack.

4. Write a loop that pops the strings from stringStack and pushes them onto name>tack.
b. Describe the contents of the stacks stringStack and nameStack when the loop that you
just wrote completes its execution.

~3 ™

1. Jillis at the top, and Jii iz at the bottom.

2. a. StackInterface<String= nameStack = new LinkedStack<String=({;

while (lstringStack.isEmpty(J)
namestack.pushistringStack. pop()d;

b. stringStack is empty, and nameStack containg the strings that were in stringStack but in reverse order (Jim
is at the top, and.7i/{ ig at the bottom).

Using a Stack to Process =
Algebraic Expressions

 Algebraic expressions composed of
= Operands (variables, constants)
= Operators (+, -, /, *, M)
| » Operators can be unary or binary
= * Different precedence notations
W s Infix
= Prefix
= Postfix

"

Wi

Using a Stack to Process =
Algebraic Expressions

* Precedence must be maintained
= Order of operators
= Use of parentheses (must be balanced)

| » Use stacks to evaluate parentheses usage
= = Scan expression

%’ 4
3 1|

= Push symbols
= Pop symbols

{ [()] } Delimiters in expression
([{ Delimiters popped from stack
R R N
(
[[I
d { { { i
After After After After After After

push('{") push(C'[") push("(") popO pop) pop()

Figure 5-3 The contents of a stack during the scan of an expression
that contains the balanced delimiters {[()] }

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Delimiters are not a pair

|: (\] Delimiters in expression
l l Delimiter popped from stack
| T
[[[
{ { { {
After After After After

push(C'{") push(C'[") push('(") popO)

Figure 5-4 The contents of a stack during the scan of an expression
that contains the unbalanced delimiters {[(]) }

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A pair of parentheses

\ A pair of brackets
N

[() } Delimiters in expression
l ([Delimiters popped from stack
[[‘ [\ ‘ \ Stack is empty when
H } is encountered
After After After After

push('[") push(' (") popO popQ)

Figure 5-5 The contents of a stack during the scan of an expression
that contains the unbalanced delimiters [()] }

Copyright ©2012 by Pearson Education, Inc. All rights reserved

= SCTO

A pair of parentheses

\ A pair of brackets
{ [() \] Delimiters in expression

l l ([Delimiters popped from stack

(
[[[
{ { { { { {
Brace is left over in stack

After After After After After

pushC'{") push(C'[") push('C') popQO pop()

Figure 5-6 The contents of a stack during the scan of an
expression that contains the unbalanced delimiters { [()]

* Implementation of algorithm to check for balanced
parentheses, Listing 5-2

J Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter05-code_listings.htm
Chapter05-code_listings.htm
Chapter05-code_listings.htm

~3 ™

Question 3 Show the contents of the stack as you trace the algorithm checkBalance, as

given in Segment 5.8, for each of the following expressions. What does checkBalance
return in each cage?

a. [a{b/(c-d)y+e/(f+g8)}-n]
b, {a[b+(c+2)/d]+e)+]}
. [af{db+[cid+ey-F]+52}

Al le-_ T Y

5. The following stacks are shown bottom to top when read from left to right:

{1
[{
|

empy
The algorithm checkBalance returns true for the expression in Part < and falze for the other two.

/Py

ATl e T

Infix to Postfix

* Manual algorithm for converting infix to
POStfIX

= \Write with parentheses to force correct
operator precedence

= Move operator to right inside parentheses

= Remove parentheses

Question 4 Using the previous scheme, convert each of the following infix expressions to
postfix expressions:

a a+bB7cC

b, a* b /(c-d)
. a/b+ic-d)
d. a/b+c-4d

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al e T

Infix to Postfix

 Algorithm basics
= Scan expression left to right

= \WWhen operand found, place at end of new
expression

= \When operator found, save to determine new
position

Next Character in Postfix Form Operator Stack

Infix Expression (bottom to top)

a a

+ a +

b ab -

* ab + ¥

C abc + *
abc* +
abc*+

Figure 5-7 Converting the infix expression a + b * ¢ to postfix form

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Next Character in Postfix Form Operator Stack

Infix Expression (bottom to top)

a a

_ a _

b ab -

+ ab-
ab— +

c ab-c +
ab—c+

Figure 5-8 Converting an infix expression to postfix form: a-b+c

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Next Character in Postfix Form
Infix Expression

Operator Stack
(bottom to top)

ab

ab
abec
abch
abe™h

> >R

™

AN

MM

Figure 5-8 Converting an infix expression to postfix form: a”b”c

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question S In general, when should you push an exponentiation operator » onto the stack?

=, Always Segment 5.14 showed that you push ~ onto the stack if another ~ iz already at the top of the stack. But if a
different operator iz at the top, ~ has a higher precedence, 2o you push it onto the stack in that situation as well.

ATl e T

Infix to Postfix Conversion

1. Operand
= Append to end of output expression

2. Operator ?
= Push ” onto stack
= 3. Operators +, -, *, /
T . Pop from stack, append to output expression

= Until stack empty or top operator has lower
precedence than new operator

= Then push new operator onto stack

"
=

ATl e T

Infix to Postfix Conversion

4. Open parenthesis
= Push (onto stack

5. Close parenthesis

= Pop operators from stack and append to
output

= Until open parenthesis is popped.
= Discard both parentheses

4
s‘_’,‘:

Next Character from Postfix Form Operator Stack

Infix Expression (bottom to top)

a a

/ a /

b ab /

* ab/
ab/ =

(ab/ * |

C ab/c * |

+ ab/c =+

(ab/c 4+

d ab/cd L+

— ab/cd Fl4+(-

€ ab/cde Fl+(-

) ab/cde— 4+
ab/cde- 4+

) ab/cde—+ * |
ab/cde—+ =
ab/cde—+ *

FIGURE 5-9 The steps in converting the infix expression
alb*(c+(d-e))to postfix form

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 6 Using the previous algorithm, represent each of the following infix expres-
sions as a postfix expression:

a (a+D) /(c-d)
b. a/(b-c)*d

c¢. a-(b/(c-dy e+ e
d. (a-b)/ (d e rf 2+ h)

0. a ab+rcd-
b. abe-id*
c. abcd-jfe*f+goh -
d. aboc*-defh*g*rh+!

a b / / /4 /4 2/4 274

FIGURE 5-10 The stack during the evaluation of the postfix
expression a b /whenais2andbis 4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

+ o+ +4 +4 244 244 ¢ / / /3 /3 6/3 6/3

I A A

|

FIGURE 5-11 The stack during the evaluation of the postfix
expressiona b +c/whenais2,bis4,andcis 3

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 7 Using the previous algorithm, evaluate each of the following postfix expres-
sions. Assumethata=2,b=3,¢c=4,d=35, and e = 6.

a. ae+bd-/
b. abc*d~* -
c. abec-/d7
d. ebeca™™+d-

Evaluating Infix Expressions

(a)

4
Sl E
+| 12

(b) *4 * 4 344 344

P

4+ =
(SIS

1L LU

FIGURE 5-12 Two stacks during the evaluation of a+ b * c when a'is 2,
b is 3, and cis 4: (a) after reaching the end of the expression;
(b) while performing the multiplication;

J Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 5-12 Two stacks during the evaluation ofa + b * c when ais 2,
b is 3, and c is 4: (c) while performing the addition

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question & Using the previous algorithm, evaluate each of the following infix expres-
sions. Assume thata =2, 5=3,c=4,4d=35, and e = 6.

.

b.
C.
d

a+bh c-9

(a+e) /(b-d)
a+b+c d)y-e/2
e -b cha+d

50

100

120

150

public static
void main(string[] arg)

{

%nf i = 5;

int v = methodA(x);
} f} én& main

public static
int methodA(int a)
{

%nf é = 2,
methodB(z) ;
Eefuén Z;
} // end methodA
public static

void methodB(int b)
{

} // end methodB

main

PC=1
arg = ...

(a)

=1

The Program Stack

FIGURE 5-13 The program stack at three points in time:
(a) when main begins execution; (PC is the program counter)

The Program Stack

1 public static
void main(string[] arg)
{
int x = 5;
50 int y = methodA(x);

1 f} én& main

100 public static
int methodA(int a) methodA
{ PC =100
P a=5
int z = 2;
120 methodB(z);
;eiu;n Z;
} // end methodA main
. . PC =30
150 public static arg =
void methodB(int b) X o §)
{ =
y=20

} // end methodB

FIGURE 5-13 The program stack at three points in time:
(b) when methodA begins execution; (PC is the program counter)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

1 public static
void main(string[] arg) nethodB
¢ e PC =150
int x = §5; b =2
50 int vy = methodA(x);
} // end main
100 public static methodA
int methodA(int a) PC =120
{ a=2>=5
C . zZ =2
int z = 2,
120 methodB(z);
;'e{:u;'n z; main
; PC =350
} // end methodA arg =
150 public static X = g
void methodB(int b) y =
{
} // end methodB (c)

FIGURE 5-13 The program stack at three points in time:
(c) when methodB begins execution; (PC is the program counter)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Libr‘a‘ry: *
The Class Stack

* Has a single constructor
= Creates an empty stack

< * Remaining methods — differences from our

StackInterface are highlighted
= public push (T item) ;

= public T pop()
= public T peek() ;
= public boolean (),

End

Chapter 5

Copyright ©2012 by Pearson Education, Inc. All rights reserved

