
Stacks

Chapter 5

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Specifications of the ADT Stack

• Using a Stack to Process Algebraic

Expressions
 A Problem Solved: Checking for Balanced Delimiters in

an Infix Algebraic Expression

 A Problem Solved: Transforming an Infix Expression to a

Postfix Expression

 A Problem Solved: Evaluating Postfix Expressions

 A Problem Solved: Evaluating Infix Expressions

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• The Program Stack

• Java Class Library: The Class Stack

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe operations of ADT stack

• Use stack to decide whether delimiters in

an algebraic expression are paired

correctly

• Use stack to convert infix expression to

postfix expression

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Use stack to evaluate postfix expression

• Use stack to evaluate infix expression

• Use a stack in a program

• Describe how Java run-time environment

uses stack to track execution of methods

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Specifications of a Stack

• Organizes entries according to order

added

• All additions added to one end of stack

 Added to “top”

 Called a “push”

• Access to stack restricted

 Access only top entry

 Remove called a “pop”

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-1 Some familiar stacks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ADT Stack

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ADT Stack

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Specify Class Stack

• Interface

 Note source code, Listing 5-1

• Example usage

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter05-code_listings.htm
Chapter05-code_listings.htm
Chapter05-code_listings.htm

Figure 5-2 A stack of strings after (a) push adds Jim; (b) push adds Jess;

(c) push adds Jill; (d) push adds Jane; (e) push adds Joe; (f) pop

retrieves and removes Joe; (g) pop retrieves and removes Jane

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using a Stack to Process

Algebraic Expressions
• Algebraic expressions composed of

 Operands (variables, constants)

 Operators (+, -, /, *, ^)

• Operators can be unary or binary

• Different precedence notations

 Infix a + b

 Prefix + a b

 Postfix a b +

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using a Stack to Process

Algebraic Expressions
• Precedence must be maintained

 Order of operators

 Use of parentheses (must be balanced)

• Use stacks to evaluate parentheses usage

 Scan expression

 Push symbols

 Pop symbols

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-3 The contents of a stack during the scan of an expression

that contains the balanced delimiters { [()] }

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-4 The contents of a stack during the scan of an expression

that contains the unbalanced delimiters { [(]) }

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-5 The contents of a stack during the scan of an expression

that contains the unbalanced delimiters [()] }

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-6 The contents of a stack during the scan of an

expression that contains the unbalanced delimiters { [()]

• Implementation of algorithm to check for balanced
parentheses, Listing 5-2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter05-code_listings.htm
Chapter05-code_listings.htm
Chapter05-code_listings.htm

Infix to Postfix

• Manual algorithm for converting infix to

postfix (a + b) * c

 Write with parentheses to force correct

operator precedence ((a + b) * c)

 Move operator to right inside parentheses

 ((a b +) c *)

 Remove parentheses

 a b + c *

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Infix to Postfix

• Algorithm basics

 Scan expression left to right

 When operand found, place at end of new

expression

 When operator found, save to determine new

position

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-7 Converting the infix expression a + b * c to postfix form

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-8 Converting an infix expression to postfix form: a - b + c

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-8 Converting an infix expression to postfix form: a ^ b ^ c

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Infix to Postfix Conversion

1. Operand

 Append to end of output expression

2. Operator ^

 Push ^ onto stack

3. Operators +, -, *, /

 Pop from stack, append to output expression

 Until stack empty or top operator has lower

precedence than new operator

 Then push new operator onto stack
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Infix to Postfix Conversion

4. Open parenthesis

 Push (onto stack

5. Close parenthesis

 Pop operators from stack and append to

output

 Until open parenthesis is popped.

 Discard both parentheses

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 5-9 The steps in converting the infix expression

a / b * (c + (d - e)) to postfix form

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Evaluating Postfix Expressions

FIGURE 5-10 The stack during the evaluation of the postfix
expression a b / when a is 2 and b is 4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 5-11 The stack during the evaluation of the postfix

expression a b + c / when a is 2, b is 4, and c is 3

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Evaluating Infix Expressions

FIGURE 5-12 Two stacks during the evaluation of a + b * c when a is 2,
b is 3, and c is 4: (a) after reaching the end of the expression;

(b) while performing the multiplication;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 5-12 Two stacks during the evaluation of a + b * c when a is 2,

b is 3, and c is 4: (c) while performing the addition

Copyright ©2012 by Pearson Education, Inc. All rights reserved

The Program Stack

FIGURE 5-13 The program stack at three points in time:
(a) when main begins execution; (PC is the program counter)

The Program Stack

FIGURE 5-13 The program stack at three points in time:
(b) when methodA begins execution; (PC is the program counter)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

The Program Stack

FIGURE 5-13 The program stack at three points in time:
(c) when methodB begins execution; (PC is the program counter)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library:
The Class Stack

• Has a single constructor

 Creates an empty stack

• Remaining methods – differences from our
StackInterface are highlighted
 public T push(T item);

 public T pop();

 public T peek();

 public boolean empty();

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 5

Copyright ©2012 by Pearson Education, Inc. All rights reserved

